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ABSTRACT

We review recent experimental and theoretical results of photon interferometry on rotating platforms. Quantum
phenomena such as two-photon interference and entanglement can be controlled with mechanical rotations in
a regime accessible to table-top experiments. We first discuss experiments demonstrating how low-frequency
mechanical rotations affect the bunching behavior of frequency-entangled photon pairs. It was shown that low-
frequency mechanical rotations can affect the temporal distinguishability of photons and can transform photonic
behavior from perfectly indistinguishable (bosonic behavior) to perfectly distinguishable (fermionic behavior).
We then give a future outlook for testing the generation of entanglement from mechanical rotation. A recent
theoretical work showed that generating path-polarization entanglement from mechanical rotations could be
verified with present technology. These works make a strong case for further exploration of quantum phenomena
at the interface with non-inertial (rotational) motion.
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1. INTRODUCTION

The seminal works by Sagnac1,2 have led to a new operational way to measure rotational motion using optical
fields. Using refinements of the same basic principle Michelson measured the daily rotation of the Earth,3 and the
current state-of-the-art with ring laser gyroscopes can achieve exquisite sensitivities of angular frequencies.4 Sev-
eral Sagnac matter-wave interferometry experiments5 have also been performed with superconducting electrons,6

neutrons7 and atoms.8–10 General reviews of the Sagnac effect can be found in.11–14

Photonic technologies have in the last decades also allowed the exploration of the coupling between quantum
states of light and mechanical rotations. The demonstration of the single-photon Sagnac interferometer15 was
followed by a series of two-photon experiments. Polarization-entangled photon pairs were shown to remain
unaffected when placed on a centrifuge.16 A Sagnac phase shift on a two-photon NOON state was observed in,17

and the current sensitivities allow the measurement of the Earth’s daily rotation.18

Here we review how mechanical rotations affect photon bunching in a Hong-Ou-Mandel (HOM) setup. It was
shown that the temporal distinguishability of photons is affected by low-frequency mechanical rotations resulting
in a shift of the HOM dip.19 Furthermore, mechanical rotations can transform photonic behavior from perfectly
indistinguishable (bosonic behavior) to perfectly distinguishable (fermionic behavior) changing HOM dips into
peaks20 (see also21 where the effect was first suggested theoretically). We then give a brief outlook for testing
the generation of entanglement from mechanical rotation. We discuss a recently proposed scheme for generating
path-polarization entanglement at low frequencies of rotation using an experimentally accessible platform.22
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Figure 1. In the top row we give blueprints of experiments with frequency-entangled photon pairs on rotating platforms,
and in the bottom row we illustrate the effect of mechanical rotations on the photon bunching statistics. (a) Hong-Ou-
Mandel scheme on a rotating platform.19 The effect of mechanical rotations is to shift the HOM dip left or right depending
on the direction of rotation. (b) Hong-Ou-Mandel scheme on a rotating platform with nested loops added to the arms of
the interferometer.20,21 By changing the angular frequency two HOM dips change into HOM peaks. By further increasing
the angular frequency we observe transitions between dips to peaks periodically. We observe a similar behavior also when
changing the direction of rotation.

2. BUNCHING AND ANTIBUNCHING IN ROTATING REFERENCE FRAMES

We review the two-photon interferometry experiments depicted in Fig. 1. The experimental signature is given
by the probability of coincidence detection:

P (2)(δt,Ω) =

∫
dt1

∫
dt2⟨ψf |b̂†(t1)â†(t2)â(t2)b̂(t1)|ψf ⟩, (1)

where δt is the HOM delay (controllable by the experimentalist), Ω is the angular frequency of the rotating

platform, â, b̂ are the two output modes, and |ψf ⟩ is the final two-photon state. For the special case Ω = 0 the
coincidence probability P (2)(δt, 0) reduces to the case without mechanical rotations.

As illustrated in Fig. 1 (a) and (b), the experiments demonstrated that the coincidence probability P (2)(δt,Ω)
changes as a function of the angular frequency Ω. Fig. 1 (a) illustrates how a mechanical rotation induces a shift
of the HOM dip. It was found that the shift of the HOM dip matches the Sagnac delay given by:11

ts(Ω) =
4AΩ

c2
, (2)

where A is the effective area of the interferometric loop, and c is the speed of light. Fig. 1 (b) depicts how the
mechanical rotations transform HOM dips into HOM peaks. The switch from dips (the case without rotation)
to peaks occurs when the accumulated phase difference is ωts = π, where ω is the mean frequency of the photon,
and ts is the accumulated Sagnac delay given in Eq. (2).

3. GENERATION OF ENTANGLEMENT FROM MECHANICAL ROTATION

We conclude with a brief discussion about the future outlook for generating entanglement from mechanical
rotations. A recent theoretical analysis suggested that an initially separable path-polarization state of a single
photon could become maximally entangled from mechanical rotations.22 For the proposed schemes it was found
that the generated concurrence C, quantifying the degree of entanglement,23 would scale as

C = |sin(ωts)|, (3)

where ts is the Sagnac delay given in Eq. (2) (with A the effective interferometric area), and ω is the photon’s
frequency. When we have Ω = 0 we find ωts = 0 and hence C = 0, which indicates that no entanglement would be
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generated (case without rotation). However, when the angular frequency Ω is tuned to achieve ωts = π/2 we find
C = 1, which suggests that maximal entanglement would be generated in the experiment. The path-polarization
entanglement could then be transferred to a two-photon state using entanglement swapping protocols.24,25

4. SUMMARY

At the practical level, the experimental control of quantum phenomena using mechanical rotations could find
applications for quantum sensing, communication and computing.26 At the fundamental level, explorations of
non-inertial (rotational) motion using quantum states of light could shed light on the elusive relation between
quantum theory and gravity.22 Quoting Albert Einstein on the origin of non-inertial (rotational) phenomena:
“... there is a gravitational field (field of centrifugal force, and force of Coriolis)...”.27 In summary, the discussed
works, experimental and theoretical, suggest further exploration of the relation between mechanical rotations
and quantum phenomena.
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