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ABSTRACT

A new approach for imaging that is solely based on the time of flight of photons coming from the entire imaged
scene, combined with a novel machine learning algorithm for image reconstruction: a spiking convolutional neural
network (SCNN) named Spike-SPI (Spiking - Single Pixel Imager). The approach uses a single point detector
and the corresponding time-counting electronics, which provide the arrival time of photons in the form of spikes
distributed over time. This data is transformed into a temporal histogram containing the number of photons per
arrival time. A SCNN that converts the 1D temporal histograms into a 3D image (2D image with depth map)
by exploiting the feature extraction capabilities of convolutional neural networks (CNNs), the high dimensional
compressed latent space representations of a variational encoder-decoder network structure, and the asynchronous
processing capabilities of a spiking neural network (SNN). The performance of the proposed SCNN is analysed
to demonstrate the state-of-the-art feature extraction capabilities of CNNs and the low latency asynchronous
processing of SNNs that offer both higher throughput and higher accuracy in image reconstruction from the ToF
data, when compared to standard ANNs. The results of Spike-SPI show an increase in spatial accuracy of 15%
over then ANN, using the Intersection of Union (IoU) for the objects in the scene. While also delivering a 100%
increase over then ANN in object reconstruction signal to noise ratio (RSNR) from ∼3dB to ∼6dB. These results
are also consistent across a range of IRF (Instrument Response Functions) values and photo counts, highlighting
the robust nature of the new network structure. Moreover, the asynchronous processing nature of the spiking
neurons allow for a faster throughput and less computational overhead, benefiting from the operational sparsity
in the single point sensor.
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Figure 1. Illustration of the different histogram inputs (a), that are converted into 3D depth maps through the novel
network proposed in this paper (b).
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1. INTRODUCTION

Most imaging methods can be divided into two categories. In the first, the scene is flood-illuminated with light,
that is, all regions of the scene are illuminated simultaneously. The light reflected by the scene is then imaged
onto many detector pixels via a lens. In the second, only a known sub-region of the scene is illuminated, and the
light reflected from that sub-region is collected onto a single pixel. By dividing up the scene into many of these
sub-regions, and measuring light from only one region at a time, one can scan over the scene. By combining the
time of flight information from the sub-regions, the entire scene can be reconstructed. These processes extend
also to three dimensional (3D) imaging, where distance from the sensor can be inferred from stereoscopic imaging,
holographic, or time-of-flight (ToF) methods.1–4

The first approach has the advantage that the scene only needs to be illuminated once, giving a substantial
advantage in speed over a point/structure scan. However, as the second approach relies on a single pixel only, it
may be operated at a higher framerate and may be much less bulky than a whole array of pixels. Therefore, the
next frontier for high speed, high framerate imaging would be to combine the speed benefit of flood illumination
with the electronic/mechanical benefit of requiring only a single pixel for detection.

In a recent work, Turpin et al.5 have demonstrated the feasibility of such an approach. They flood-illuminated
a scene with a pulsed laser source, and focused the back-reflected light onto a single detector pixel. To achieve
this, a single photon avalanche diode (SPAD) and Time Correlated Single Photon Counting (TCSPC) were used
to measure the ToF of the photons between emission and back-reflection from the scene. Instead of measuring
the spatial structure of the light, as in the aforementioned methods, the images were reconstructed from the
ToF alone, with the temporal data being interpreted by an Artificial Neural Network (ANN) trained from both
example ToF histograms and ground-truth 3D images. Figure 1 depicts these input histogram (a) to output 3D
images (b) process. The difficulty arises from losing the spatial structure of the scene, resulting in the inverse
image retrieval problem becoming heavily ill-posed. As the whole scene is illuminated simultaneously, and all
photons are collected onto only 1 pixel, a photon measured at time t may originate from any point on the surface
of a spheroid, or if the illumination source right next to a detector, a sphere (see Figure 2). The radius of the
sphere of possible reflection point is given by r = ct.

Figure 2. Geometry of the problem. For a given time of flight t, the distance d that the photon travelled is known (d = ct).
The set of points of fixed travel distance d lie on the surface of a prolate spheroid (blue mesh), whose foci are the photon
emitting laser (orange point) and the detector SPAD (blue point). The spheroid becomes a sphere in the limiting case
when the SPAD and the laser are at the same point. Conversely, the spheroid becomes more ellipsoidal as the separation
between SPAD and laser increases. The set of possible reflection points, then, is the intersection of this spheroid with the
illumination beam (light cone shown in red). Three such possible reflection points are shown in green and their associated
paths in black.
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In other words, just from the arrival time of a photon, it is analytically impossible to determine which point
the light came from. However, that is not to say that the retrieved temporal information is fully uncorrelated to
the spatial structure of the scene. Objects (such as people, chairs, cars, etc.) reflect photons with recognisable
temporal traces, yet these traces are dependent on the object’s orientation, reflectivity, distance from the camera,
size, vicinity to other reflective objects and so on. To further complicate the issue, multiple objects can have
the same temporal trace. As a result, it is practically infeasible to try to reconstruct objects by implementing a
dictionary mapping temporal traces to potential sources. However, Turpin et al.5 have shown that a machine
learning algorithm can identify structures in the temporal signal which correspond to spatial structures in the
scene, allowing them to recover a 3D scene from purely temporal data.

This paper presents a novel solution to this temporal imaging problem through the use of an asynchronous
sparse processing method. The solution presented in Turpin et al5 was a standard fully connected ANN with
approximately 10 million parameters, which yielded good results. However, this particular problem has many
traits in which a neuromorphic approach with Spiking Neural Networks (SNN) could be beneficial. Indeed the
ToF sensor is akin to that of a spiking sensor, in that it records single instances of photons returning after a
pulse has been transmitted, assigning a time-stamp to each return. This is then similar to a Neuromorphic Vision
Sensor,6 albeit without the other three values of x, y and polarity, but an importance on timing. Typically
this sensor would capture thousands if not tens of thousands of photons to get a good distribution of the light
reflecting in the scene, then process this histogram of time returns in order to retrieve a 3D depth map, as shown
in Figure 1.

The inverse retrieval problem presented has two main areas that this paper looks to improve. First is the
re-imaging of the network from a ANN to a variational fully convolutional encoder-decoder network, which is an
accurate, high quality image creator,7,8 that can also be adapted to spiking networks successfully.9,10 In this
case though, the variational term is referring to the translation from the 1D depth domain to the 3D depth map
domain, where the transverse positional features are inferred by the network. The second improvement comes in
the processing overhead and latency. The processing overhead is seen as the amount of calculations that need to
be carried out for the network to return an output. The spiking nature of proposed network Spike-SPI (Spiking
- Single Pixel Imager) allows a reduction in information being propagated through the network, thanks to the
spiking neurons thresholding ability. In terms of latency, each processing stage can only be complete when the
photon counter has reached the desired captured value; this results in a dead time in waiting for the sensor to
return enough information before processing, and a similar constraint in waiting for the processing stage to finish
before the next batch can run. The asynchronous characteristic of the spiking neuron could help to reduce this by
allowing continual processing of direct or buffered inputs.

The remainder of this paper is organised as follows. Section 2 the methodology, cover the simulation and
proposed network details. Section 3 details the results of the simulations comparing the proposed Spike-SPI
network with the ANN model of Turpin et.al.5 Section 4 details the broader impact of this work, while Section 5
contains the conclusion.

2. METHODOLOGY

The 3D imaging approach consists of three main elements: i) a pulsed light source, ii) a single-point time-resolving
sensor, and iii) an image retrieval algorithm. The scene is flood-illuminated with the pulsed source and the
resulting back-scattered photons are collected by the sensor. A single-point SPAD detector, operated together
with time-correlated single-photon counting (TCSPC) electronics, forms a temporal histogram [Figure 1(a)] from
the photons arrival time. Objects placed at different positions within the scene and objects with different shapes
provide different distributions of arrival times at the sensor11

In this paper, we trained our neural networks on synthetic data (used by Turpin et al.5), which had been
designed to simulate the imaging setup described above. The simulations contain humanoid silhouettes in
various poses in front of a background consisting of some objects, as illustrated in Figure 3. The silhouettes and
background objects form a 20m3 3D environment, as seen by a simulated 3D camera, where the distance from
the virtual camera is encoded in the colour of the scene.
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Figure 3. Mock-up of the synthetic scene used, with the 3D camera and SPAD capture the scene in depth image and
histogram formats. The scene is made up of the human silhouette and the scene objects of a chair, car, lamp and anchor.

We then find the photon arrival time probability density function (PDF) for the virtual scene. Then, the
signal observed by a virtual single-point SPAD can be estimated by convolving the photon arrival time PDF with
a Gaussian instrument response function (IRF). Finally, assuming that subsequent photon measurements are
independent and identically distributed, we simulate n photons detected by the virtual SPAD with TCPSC by
sampling the convolved photon arrival time PDF n times, assigning each photon into one of 8000 time bins, with
the bin size being 2.3ps. This bin width is convolved with the two IRFs of 20 and 100ps, resulting in values more
consistent with practical values of time counting electronics. Photon counts of 1000 and 9500 were also selected
to represent a typical amount of photon returns selected with 9500 and a fraction of that to test the ability to
batch process smaller amounts of information.

The new variational Encoder-Decoder Spike-SPI network is shown in Figure 4. It comprises 18 layers with
10 layers for the encoder and 8 layers for the decoder. The input comprising the 8000 bin histogram of the
captured ToF data. These are processed though the network’s convolutional layers as detailed in Table 1. The
ANN network5 used as comparison has 3 fully connect layers with 1024, 512, and 256 nodes respectively. Both
networks were given the same training data which was split into 4 different experiments, with the two different
photon counts and two different IRFs. This was done to allow a range of testing to mimic some best and worst
case scenarios, from the high photon count of 9500 and small time windows of 20ps, through to the 1000 photon
count and 100ps time window. This also helps to determine the robustness of the network to differing input
conditions. The networks are both trained on the 11600 samples using 29 different silhouettes, with all training
and validation testing instances ensuring images and their mirrored version are kept together. These mirrored
pairs are kept due to the histogram of silhouettes mirrored on the center of the y axis are identical; however
this does not mean the full histogram is identical as different sections of the scene are occluded in each case as
illustrated in Figure 5. For final testing, the networks are shown histograms of a previously unseen silhouette in a
range of depths and potions in which it has to reconstruct. In total there are 20 x positions, and 10 z positions,
for each silhouette all with the exact same scene of objects.

Utilising the feature extraction capabilities of Convolutional Neural Networks (CNN), the high dimensional
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Figure 4. Spike-SPI Network structure with 1D convolutions reshaped into 2D convolutions. Input of 8000 long vector,
reshaped at the transformation stage from 16 long vector to 4x4 matrix, before being output as a 64,64 matrix with 3
colour channels.

compressed latent space representations of an Encoder-Decoder network structure and the asynchronous processing
capabilities of a SNN, we develop a novel spiking convolutional neural network (SCNN) structure that converts
the 1D depth histograms into a Depth Map. Through the use of 1D convolutions the network is able to encode
subtle differences in local spatial regions within the depth histograms into a high dimensional latent space. This
allows the subtle differences in the histogram due to the silhouette placement in the scene and the area which it
occludes to be captured. This latent space is then decoded by a 2D convolutional decoder, exploiting the strong
spatially local correlation present in natural images. All this while the asynchronous processing nature of the
spiking neurons allow for a faster throughput and less computational overhead, reinforcing the benefits of the
operational sparsity in the single point sensor.

Table 1. Details of the Spike-SPI network

Network Spike-SPI ANN
Layer Ce1 Ce2-3 Ce4-10 Cd8-5 Cd4-3 Cd2 Cd2 Up FC1 FC2 FC3
Kernel Size 7 7 7 5 5 5 5 2
Feature Number 64 128 256 256 128 64 1 1024 512 256

The spiking neural network described, is trained as a traditional CNN then converted to a SCNN through the
use of Nengo,12 which is a tool for constructing and simulating neural networks that is similar to TensorFlow.
Although Nengo can be used to create TensorFlow13-style networks, it has been primarily designed for a different
style of modelling: neuromorphic networks. Such networks include features drawn from biological neural networks,
in an effort to understand or recreate the functionality of biological brains. Note that these models fall on a
spectrum with standard artificial neural networks, with different approaches incorporating different biological
features. But in general the structure and parameterisation of these networks often differs significantly from
standard deep network architectures. A common characteristic is the use of more complicated neuron models,
in particular spiking neurons. In contrast to “rate” neurons (like relu) that output a continuous value, spiking
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Figure 5. Histograms for both (a) 1000 photons and (b) 9500 Photons, showing the similar silhouette histogram but
differing scene histograms.

neurons communicate via discrete bursts of output called spikes, which allows both the asynchronous features
and lower computational overhead. Within this work NengoDL14 is used to convert the trained CNN model into
an asynchronous spiking model, which allow lower computational throughput along with a continual processing
approach.

Qualitative aspects from the reconstruction can be gauged visually by comparing the outputs of the two
systems, namely the ANN and Spike-SPI. This allows for comparisons on not only the structural shapes of the
object resolved, but the associated depth at which they reside, encoded within the colour data of the depth map.
Along with qualitative measures, a series of quantitative measures are also proposed within the less common
metrics equations given as follows. The restoration quality was evaluated using the reconstruction signal-to-noise
ratio (RSNR),15,16 which is a metric that has been used for depth image reconstruction on sparse single photon
data.

RSNR = 10 log10

(
‖y‖2

‖y − y∗‖2

)
(1)

where y is the predicted depth map and y∗ is the ground truth. ‖y‖2 is the `2 norm given by yT y.

The other metrics are typical quantitative measures in depth estimation.17 The equations for the other chosen
metrics: SNR, AbsRel, SqRel and RMSE can be found in the appendix. Hoever the less common metrics are
listed as follows.

The scale invariant log root mean squared error, si-logRSME17 is calculated with

si-logRMSE =
1

2|T |
∑
i

(
log yi − log y∗i +

1

|T |
∑
i

(log y∗i − log yi)

)2

(2)
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For any prediction y,
1

n

∑
i

(log y∗i − log yi) is the scale that best aligns it to the ground truth. All scalar multiples

of y have the same error, hence the scale invariance.

The accuracy score is set through the number of pixels that remain within a threshold such that

% of yi | max
( yi
y∗i
,
y∗i
yi

)
= δ < thr (3)

where δ is compared to three set threshold 1.25, 1.252, 1.253, with each value allowing a greater depth error to
count in the accuracy.17

Lastly, the comparison metrics also include the Intersection over Union (IoU), that allows the comparison of the
foreground objects of the ground truth y∗ to be compared with the with the reconstructed foreground objects in
y. This is done through first masking the foreground objects from the background. The background in these
experiments are uniform and at maximal distance from the sensor. In order to threshold this and mask the
foreground elements, the background is set at everything greater than 99% of the max distance. This means the
constant scene objects and the silhouette mask are compared against the ground truth version to see how many
pixels are correctly identified as belonging to an object. Meaning it is essentially looking for background pixels
that have been incorrectly given a depth punishing a blurred edge smoothing or averaging approach. The IoU is
calculated with the following18

IoU(ymask, y
∗
mask) =

ymask ∧ y∗mask

ymask ∨ y∗mask

(4)

with ymask and y∗mask representing the masked reconstruction and ground truth images respectively.

The chosen metrics include some of the typical full image comparison measures, however it is apparent that due
to the averaging nature across some of those metrics, if the network learns to blur across the areas of interest, on
average it will receive a good score. This results in overall depth estimation being compared and not the spatial
reconstruction. This is why there are a number of relative metrics and a IoU scoring system to test the two
models outputs. As the testing should indicate which model best recovers the shape and depth of the silhouette
and scene objects.

3. RESULTS

This sections details the results from the 4 experimental setups with photon counts being 9500 and 1000, while
the IRF is set to 100ps or 20ps. The results of both networks are first tested on the validation test data and then
on the unseen test data, to compare their depth map reconstruction abilities. Results from the unseen testing
scenario are found in Table 2 comparing the two models, Spike-SPI and the ANN from Turpin et al.,5 against all
the metrics detailed in the methodology.

The experimental results are broken into two sections, with qualitative results for the validation testing and
both qualitative and quantitative results for the unseen testing data, where as highlighted in Table 2 Spike-SPI
scores better on all metrics other than the SNR and RMSE. However, within the qualitative results it is clear
as to why this is the case, when looking at the precision of both reconstructions. For all the other metrics
tested, Spike-SPI was able to achieve better reconstruction results especially in metrics that focus on the spatial
reconstruction such as the IoU, where an increase of over 0.12 on average represents a considerable increase in
accuracy. The accuracy metrics shown in terms of δ < 1.251,2,3 as seen in (3) are a great indicator of the why
some of the full image averaging metrics score the ANN higher than Spike-SPI. As the threshold for δ increases
this is allowing a greater inaccuracy to count as correct on a per pixel basis, showing that with the tightest
threshold of 1.25 (25% relative difference between reconstruction and ground truth) that Spike-SPI scores better
across all tests. However, when increasing the threshold to 1.252, the accuracy only slightly favour Spike-SPI and,
with the largest threshold 1.253, the ANN scores higher. Further insight into these values based on the accuracy
metrics would appear to show that around 87% of the pixels in the image have a depth estimate that is very
accurate, while the remaining are considerably off. It is these misclassifications of pixels that brings the average
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Figure 6. Outputs of the two networks, ANN and Spike-SPI for (b) 9500 Photon, 20 IRF and (c) 1000 Photon, 100 IRF
validation data. With (a) the ground truth data displaying 10 examples of silhouettes in the scene at the top. ANN in
green on the left and Spike-SPI in red on the right.

score of Spike-SPI down on the full image metrics. Where a high precision, without 100% accuracy leads to
instances where the majority of the pixels may be correct but those that are incorrect have a large error value.
This can be seen as the manifestation of Spike-SPIs convolution layers for decoding, guessing which silhouette is
in the image from the compressed latent space representation. This silhouette guess then turns into a precise
reconstruction which inevitably has errors.

This characteristic described previously are seen in Figures 6 (validation data) and 7 (unseen test data). Within
both figures if the silhouette has a different outline from the ground truth, or is attempting to guess an unseen
outline, the areas in which the reconstruction are incorrect happen to be a high magnitude depth error. This is
due to the pixels normally belonging to the background which is set to max depth being misclassified. However,
this resulting large depth error might actually be only 1 or 2 pixels off in terms of spatial error. Ultimately this
results in metrics that favour depth accuracy over spatial accuracy, giving a better score to the ANN model over
Spike-SPI. As a result close attention has to be paid to what the actual values of the quantitative results in Table
2 actually mean. The results of this spatial or depth focus is shown within the results illustrated in Figures 6 and
7, where the ANN reconstructions with the blurred edges of the estimated silhouettes favours depth, while the
convolution process of Spike-SPI reduces this blurring significantly favouring spatial errors.
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Figure 7. Results on unseen silhouette data with reconstructions shown within depth map columns. Results of IoU masking
also shown for this test data within the Mask columns. Testing shown for both (a) the 9500 Photon, 20 IRF and (b) the
1000 Photon, 100 IRF data.

Looking closer at the qualitative results in Figure 6, which depicts the ground truth images shown above the
ANN (left) and Spike-SPI (right), it can be seen that Spike-SPI has a higher spatial acuity, highlighted within
Figure 6 as the silhouette holding the pic axe, where both the arms and the handle of the axe have been well
resolved. This acuity is also still captured within the 1000 photo 6 (a) data as well as the 9500 photo data 6 (b).
It is noticeable the deterioration in the spatial outline of the silhouettes within the ANN data, when comparing
the 1000 and 9500 photon results of Figure 6 (a) and (b) respectively. This consistency across a lower photon
count is also reflected within the quantitative results in Table 2, where the results of Spike-SPI have less of a
spread than the ANN across the 4 experiments.

Figure 7 illustrates the results of the unseen silhouette testing, while also illustrating the results of the masking
process for the IoU measurement. The masking process not only highlights the spatial acuity of the Spike-SPI
model compared to the ANN, but serves as a visual explanation of the accuracy results with the increasing
thresholds. Within both photon counts shown in Figure 7 (a) and (b), Spike-SPIs results consistently mask a
smaller percentage of the scene as foreground. This helps to visualise this acuity that penalises the method on
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Table 2. Results from the experimental testing split into 4 sections with 2 photon count values of 1000 and 9500 and two
IRF for each of those at 100ps and 20ps.
Best (Bold), best in test (Italic), higher is better (↑), lower is better (↓)

Photon
Count

IRF
ps

IoU ↑ SNR
dB ↑

R-SNR
dB ↑ absRel ↓ sqRel ↓ RMSE ↓ si-log

RMSE ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

ANN 0.650 14.844 2.880 22.074 4.444 0.189 0.474 0.853 0.886 0.908
Spike-SPI

100
0.783 14.284 6.502 3.597 1.323 0.201 0.456 0.871 0.890 0.906

ANN 0.650 14.708 2.890 26.354 5.142 0.192 0.476 0.853 0.886 0.908
Spike-SPI

1000

20
0.760 14.155 5.842 6.571 1.502 0.202 0.456 0.868 0.889 0.906

ANN 0.637 15.076 2.614 20.558 3.846 0.187 0.468 0.856 0.889 0.909
Spike-SPI

100
0.780 14.391 6.360 3.066 1.163 0.198 0.456 0.871 0.890 0.905

ANN 0.631 15.070 2.500 15.124 2.559 0.188 0.470 0.856 0.888 0.910
Spike-SPI

9500

20
0.778 14.424 6.358 3.461 1.438 0.198 0.456 0.870 0.888 0.904

some metrics, as it is apparent that is has misclassified some of the pixels when compared to the ground truth.
This resulting high error value across a small number of pixels is in contrast to the ANN model, which has a
lower spatial acuity as seen in the mask, but it also has a lower error value across a larger number of pixels.
Since within this task our objective is to spatial resolve from depth measurements, Spike-SPI can be seen to
quantitatively and qualitatively outperform the ANN.

3.1 Spiking Benefits

From the results discussed so far, the main benefits of the Spike-SPI network stem from the CNN approach of the
SCNN and not the spiking elements. To see the results of the spiking neurons the histograms must be feed into
a simulation with an asynchronous processing pipeline. From this simulation the results of a spiking approach
are illustrated in Figure 8 (a), showing that not only is Spike-SPI better at image reconstruction, due to the
CNN Encoder-Decoder structure, but it can achieve this with less processing power. Figure 8 (a) highlights
this reduction in processing power with the displaying of the spiking activity in the networks over 60 time steps
within the simulation. Figure 8 (a) shows an average neuron firing rate of 1Hz with a maximum neuron rate of
150Hz, while the overall activity rate is only 11%. This method also has the ability to scale the neurons firing
rate, meaning more processing power being drawn, but as a result the simulation requires less steps to produce
an image as shown in Figure 8 (b), where now the image is mostly formed by the 18th time step, and by the
24th it is resolved but with the background needing to settle. Figure 8 (b) also shows that some of the neurons
are now firing twice during the activity, with similar higher activity in the mean, max and activity rate overall.
Even with this increase only a quarter of the overall neurons available are active. This ability to process with
less neurons is in fact a negative characteristic of the CNN structure, that the SCNN can exploit. Often within
a CNN many of the neurons are not propagating useful information forward, in that they are only reporting a
very small similarity of the kernel within a location of the image. As highlighted in Figure 8, the majority of
neurons in our model at any given time are inactive. However, within the typical CNN approach there is no
neuron threshold to stop the forward propagation of this information. This reduction in information propagation
can lead to a reduction in reconstruction accuracy if the hyper-parameters of the spiking neurons are not correctly
set. Although, throughout the testing in this paper no conceivable difference was recorded between the CNN and
SCNN models in both qualitative and quantitative terms, and as such the CNN results are not compared.

Proc. of SPIE Vol. 11540  115400J-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 06 Oct 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 8. Visualised results of the spiking impact on the network, with the spike rates of a cross section of neurons
shown within the middle section called Neural Activities, for the given input histogram with corresponding ground truth
image. The figure also show the output of the spiking network at given time steps, as the information is processed in an
asynchronous manner. (a) illustrates a lower firing rate while (b) illustrates a higher firing rate with faster processing but
more neural activity.

3.2 Feature Visualisation

This sections is used to form insight and understanding into what the SCNN network is processing. That is
what information does the network use to help understand the histogram and convert it into a depth map.
Understanding of the network can be formed through weight and feature map visualisation. Figure 9 shows the
weights and features maps associated with Spike-SPI from the Photon Count 9500, IRF 20, where weights and
feature maps from 4 layers are illustrated. The first of these is the Conv 1 Encoding layer of the encoding, which
looks at the histogram and tries to find useful spatial features that can help to describe the histogram within
a windowed area covering 7 time bins. Figure 9 displays the corresponding weights from this process and the
resulting feature map of each of the weights. The feature maps at this point look very similar as the kernel size of
7 compared to 8000 is relatively small. In the Conv 9 layer of the network the relative size of the kernel to the
start histogram is considerably larger with each kernel now covering around 500 time bins. The resulting feature
maps now depict a latent representation of the original histogram, with feature maps highlighting if the feature
belonged to an object that was shallow of deep within the scene. It can also be seen within Figure 9 that some
of the feature maps of Conv 9 have a horizontal line meaning no useful information from this weight is found.
Considering 3 of the 24 maps shown contain this out of the 256 available it is apparent how the spiking neuron
can reduce the neuron activity of the network. The second half of Figure 9 illustrates the 2D convolution weights
and feature maps of the decoding process.These 2D weight decode both the spatial and depth information from
the latent space, with the feature maps showing the output of the network for the according weight. Conv 4 has
a much more subtle output compared to Conv 1 Decoding, which the resulting feature maps highlight the weight
interest area. That being either the silhouette, scene objects or background. Similar to the encoding process
the decoder also has some neurons that are essentially inactive depicted with all back feature maps. The image
associated with these activation is the same as the top image in Figure 7, which is why the Conv 1 decoding
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feature maps appear to show the silhouette of a woman on the left of the scene.

Figure 9. Showing selected weight and feature map results from the 9500 Photon, 20ps IRF data. From top to bottom
depicts the encoding early and late stage layers weights and feature maps, then a late and early stage decoding layers
weights and feature maps. Feature maps are the results of the activation of the weights to a given input, with the equivalent
weight and feature map being collocated within respective columns.

4. CONCLUSION

Throughout this paper novel approach to depth imaging is shown to be able to outperform the previous state of
the art. Spike-SPI not only delivers better spatial reconstruction and depth estimation within the depth maps but
is able to do so in a asynchronous spiking manner. This allows not only a theoretical reduction in processing time,
but an actual reduction in the amount of processing power required to produce an image, thanks to less neuron
activity and the ability to produce depth map with less photons captured. These characteristic are illustrated
with Spike-SPI being able to resolve the scene with less photons to a higher fidelity, while only using a fraction
of the computations. Through utilising multiple aspects of a variety of machine and deep learning approaches,
Spike-SPI is able to exploits the useful characteristic of these approaches while offsetting the drawbacks. This
research highlights the benefits of a pragmatic approach to problem solving, utilising benefits of many system to
deliver state of the art results.
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5. BROADER IMPACT

The experiments were carried out in scenes where objects were moving in front of a static scene. This makes our
approach well suited for applications where the device needs to be placed at a fixed position during operation, i.e.
with a fixed scene. There are multiple situations where operating in a fixed environment is useful. Examples are
surveillance and security in public spaces, etc. These are examples where the scene and background (e.g. walls of
the room, buildings) do not change at all and they are also very widespread scenarios. Currently, cities have
spaces that are constantly monitored with CCTV cameras that also potentially record information from which it
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is possible to extract information that breaches data protection policies. Our approach is therefore useful for
cases where one requires human activity in a fixed area and in a data-compliant way. The approach shown here
would be also valid in a slowly changing environment, where training could in principle be continuously updated.
Indeed, background objects within the scene will appear static if they change at a slower rate (and/or are at
a larger distance) with respect to the dynamic elements of the scene or slower than the acquisition rate of the
sensor. An interesting route for future research is of course to also investigate methods that account for dynamic
scenes, especially considering the new ability of asynchronous processing at lower photo return counts, would
allow for a much shorter determination of what is relatively ’static’ and ’dynamic’.
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APPENDIX A. FURTHER EQUATIONS FOR COMPARISON METRICS

The Signal to Noise ratio is used to determine the amount of noise exists in the reconstruction compared to the
ground truth depth image.

SNR = 10 log10

(
y∗

y∗ − y

)
(5)

where y is the predicted depth map and y∗ is the ground truth.

The absolute relative error is calculated with

Abs Rel =
1

|T |
∑
y∈T

|yi − y∗i |
y∗

(6)

where each nth pixel is indexed by i to form yi, y
∗
i , giving a per pixel metric. T is the total number of pixels per

image.

The squared relative error is calculated with

Sq Rel =
1

|T |
∑
y∈T

‖yi − y∗i ‖2

y∗
(7)

The root mean squared error is calculated with

RMSE =

√
1

|T |
∑
y∈T
‖yi − y∗i ‖2 (8)

APPENDIX B. FURTHER IMAGES
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Figure 10. Full image of the result from the 9500 photon count 20ps IRF data
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Figure 11. Full image of the result from the 1000 photon count 100ps IRF data
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Figure 12. Full image of the result from the 9500 photon count 20ps IRF data for the unseen testing data including the
masking for the IoU results
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Figure 13. Full image of the result from the 1000 photon count 100ps IRF data for the unseen testing data including the
masking for the IoU results
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Figure 14. Spiking Influence on the Network for more examples showing similar results across all tests
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Figure 15. Weight and Feature Map visualisation for the best Spike-SPI network with data from 9500 photons and 20ps
IRF. This image helps to show the similarities and difference between the learned features of each of the individual kernels
and what areas they help to encode/decode
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