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Statistical dependencies beyond linear correlations in light scattered by disordered media
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Imaging through scattering and random media is an outstanding problem that, to date, has been tackled by
either measuring the medium transmission matrix or exploiting linear correlations in the transmitted speckle
patterns. However, transmission matrix techniques require interferometric stability and linear correlations, such
as the memory effect, can be exploited only in thin scattering media. Here we show the existence of a statistical
dependency in strongly scattered optical fields in a case where first-order correlations are not expected. We also
show that this statistical dependence and the related information transport is directly linked to artificial neural
network imaging in strongly scattering, dynamic media. These nontrivial dependencies provide a key to imaging
through dynamic and thick scattering media with applications for deep-tissue imaging or imaging through smoke

or fog.
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I. INTRODUCTION

The statistics of individual speckle patterns created by co-
herent illumination of an optically random medium is well
understood. It is widely accepted that, as the real and imag-
inary parts of the scattered field are uncorrelated Gaussian
random variables, the field amplitude follows a Rayleigh dis-
tribution and the light intensity follows a negative exponential
distribution [1]. Identifying the correlation statistics of scat-
tered light is a more challenging problem. Various types of
correlations in space, time, or frequency may exist in the scat-
tered fields, depending on the problem geometry and disorder
strength [2,3]. A particularly relevant configuration involves
imaging through a scattering slab, where a common goal is
to reconstruct the image of an object from the transmitted
scattered light. The strongest and most evident of the field
correlations, the memory effect (ME) [3.,4], has proven to be
useful in such a situation, for example, allowing to recon-
struct the image from a simple autocorrelation calculation of
the speckle pattern [5—7]. Recently, more subtle, long-range
mesoscopic correlations emerging in strongly scattering me-
dia [8] have been used to retrieve the image of a hidden object
[9]. However, first-order correlations capture only a fraction
of the total statistical dependence between random variables
[10].

The dependence between random variables can be embed-
ded into higher-order correlations even when the first-order
correlation is zero. As quantifying all the higher-order
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correlations can be challenging especially for the case of
multiple variables, usually information-theoretical criteria are
applied to analyze a statistical dependence. In particular,
nonzero mutual information (MI) implies a dependence be-
tween the random variables. Information theory approach has
been applied to wave scattering in the context of radio-wave
communication [11], albeit focusing more on temporal or fre-
quency modulations rather than spatial information [12-14].
In recent work [15], the universal bounds of spatial informa-
tion preserved in multiple scattering were estimated within
the context of random matrix theory [16], thus neglecting the
details of a realistic optical random scattering potential.

Alternatively to a stochastic approach to the characterisa-
tion of multiple scattering media, it is possible to formulate
a deterministic description based on a transmission ma-
trix (TM) measurement [17,18]. This complex-valued matrix
completely characterizes the mapping between the input and
output fields and, once known, can be used to calculate the
input field distribution from the output speckle pattern. The
TM approach has been successfully applied to both diffuse
imaging and imaging through multimode fibers [19,20]. How-
ever, it suffers from the main drawback that it is sensitive to
optical wavelength scale changes in the scattering medium.
Measuring the transmission matrix typically requires some
form of holography that needs to be repeated for a number
of input modes and therefore is very challenging to extend
to dynamic scattering media such as live tissue or fog. Even
apparently static media such as white paint are known to
evolve over relatively short timescales [21].

The TMs of typical disordered media can also be extremely
large, so data-driven approaches seem a reasonable way to
tackle the resulting complicated mapping between the input
and output patterns. Machine learning and artificial neural
networks (ANNs) have therefore been increasingly applied
over the past few years to the problem of classifying ob-
jects or imaging through scattering media [22-26]. These
methods, however, tend to suffer from the same drawback as
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the TM approaches, i.e., minimal changes of the scattering
medium deteriorate or render the reconstruction impossible.
Recently, a convolutional neural network based on the U-net
architecture [27] was shown to be capable of reconstructing
the image of a hidden object through optical disorder, while
being trained on similar, but different disorder realizations
[28]. These results were demonstrated in a very thin diffuser
that will therefore exhibit a marked (i.e., wide-angle) ME. A
recent extension to the case of multimode fibers was explained
as the result of weak but nonzero correlations [29].

In this work we demonstrate the presence of a statistical de-
pendence in the optical field distribution transmitted through
a random medium. We purposely consider a system in which
no memory effect or any other linear correlations could be
present, which is achieved by stacking two glass diffusers at
a distance from each other. Numerical modeling allows us
to calculate the amount of MI between discretized input and
output fields, which gives us an estimate of the input image
information carried through this scattering system. We then
verify the ability of a U-Net ANN to also image handwritten
digits and show that the image reconstruction quality depends
on the amount of mutual information. Remarkably, we also
find a similar quality image reconstruction in the presence
or absence of the memory effect that underlines the unex-
pected dominant role played by these statistical dependencies
in supervised imaging approaches. These findings extend the
current paradigms for diffuse imaging to random media that
are both dynamic and strongly scattering and provide a key
to imaging in various scenarios ranging from dynamic multi-
mode fiber endoscopes to imaging through fog and tissue.

II. RANDOM SCATTERING BEYOND
THE MEMORY EFFECT

The scattering configuration we consider is typical to a
number of imaging through obscuration experiments, see
Fig. 1(a). A collimated laser beam illuminates a spatial light
modulator (SLM). The SLM is imaged by a 4 f lens system
onto a camera. The random scattering medium is made of one
or two ground glass diffusers (220 grit, Thorlabs) separated
by 5 mm and positioned between the SLM and the first lens
of the imaging system.

One of the main goals of this work is to investigate the
underlying physics of imaging through unknown or dynamic
scattering media in the absence of the ME, i.e., in a regime
in which standard approaches based on the measurement of
a single transmission matrix or on the autocorrelation of
transmitted speckle patterns would fail. The simple system
of two diffusers excludes the possibility of the ME to influ-
ence image reconstruction, which we verified by projecting
a simple three-dot pattern shown in Fig. 1(b) and calculat-
ing the autocorrelation C(Ar) = ([ I(r)I(r + Ar)/ [ I*(r))
of the scattered light far-field speckle patterns / (obtained by
removing the imaging system), averaged over 600 different
diffuser realizations. As we can see in the middle panel of
Fig. 1(b), the autocorrelation of the light scattered by a single
diffuser shows a clear hexagonal pattern (the autocorrelation
of the projected pattern), indicating the presence of linear
correlations and ME. The right panel shows the same autocor-
relation for the two spatially separated diffusers characterized
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FIG. 1. Experimental setup and memory effect. (a) Experimental
setup: A laser illuminates a SLM (DMD or liquid crystal) which is
imaged onto the camera (CCD). The scattering medium is made from
one or two glass diffusers separated by 5 mm. (b) A three-dot pattern
projected by the DMD was used to test for the presence of the mem-
ory effect (the separation between the dots was 0.8 mm). With one
diffuser, the averaged output speckle autocorrelation clearly shows
correlation features, indicating the presence of the ME. With two
diffusers, the correlation pattern completely disappears, indicating
the absence of any ME. Central peak with C =1 is removed for
better visibility.

uolje|all

by the absence of any structure, indicating the absence of any
ME.

III. STATISTICAL DEPENDENCIES
IN SCATTERED LIGHT

To track the statistical dependencies between the input
and output light intensities for such a system one can build
a probability density function (PDF) P[I(xj,), I (You)], where
I(riy) and I(ryy) are the input and output light intensities, re-
spectively. This is a very complicated object since it captures
all the possible combinations of the input and output (con-
tinuous) intensities at arbitrary positions in front and behind
the scatterer. Assuming the intensity is discretized at N; levels
and there are Ny, and N, observation points in the input and
output, respectively, the total dimension of this PDF would be
NN x N We numerically study a low-dimensional version
of this distribution with N; = 2 and Nj, = Ny = 9 to get an
estimate of the lower bound of the mutual information (MI)
between the input and output light distributions.

We modeled the scattering layers by applying a random
phase mask to the input field and calculating the output pat-
tern at a particular distance from the incident plane using
the standard Fresnel propagation formula (see Supplemental
Material [30] for more model details). The spatial profiles that
we use as the phase masks have two characteristic parame-
ters: average width of the features (autocorrelation width) and
their average height (standard deviation of the profile). These
two parameters determine the strength of the scattering. The
input pattern was a set of nine Gaussian spots, each of their
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amplitudes being an independent Bernoulli process. The input
field therefore carries exactly nine bits of spatial information.
We calculated the output patterns for each of the 512 combi-
nations of the input spots, each for 1000 different realizations
of the random phase masks. We then thresholded the resulting
output patterns with respect to the average intensity, selected
nine subregions of those binarized patterns and assigned nu-
meric labels to each of the 512 possible combinations of zero
or unit intensity within them. The histograms of the pattern
labels over the disorder realizations can be interpreted as the
conditional distributions of a joint PDF, given a particular
input pattern. As all the input patterns are equiprobable, the
joint PDF was obtained by simply stacking the conditional
PDFs. The MI was then calculated using the standard formula

T = H[PI™)] — H[P(I"™|I®")]. (1

The first term is the entropy of the input intensity probability
distribution (equal to nine bits) and the second term is the
conditional entropy H[P(I™|I*)] = Y, p;H[P(I™|[*" =
I?"™)], where p; are the probabilities of different output pat-
terns, H[P(I™P|[°% = I?")] are the conditional distributions
given a particular output pattern outcome, and H is the stan-
dard entropy H[P(x)] = — ), P(x;)log,[P(x;)]. To remove
the bias of the conditional entropy estimator, we use its jack-
knife version [31] (see Supplemental Material [30] for more
details).

Figure 2(a) shows example input and simulated output
patterns for two different bilayer phase mask realizations:
in the left panel the roughness height standard deviation of
the phase masks was 1.3 um, while in the right one it was
13 um. The broader intensity distribution in the second case
reflects the stronger scattering conditions. The resulting sim-
ulated PDFs, shown in Fig. 2(b) indicate that in the stronger
scattering scenario (right panel) the resulting PDF is closer
to a simple product of the conditional distributions: some
output patterns are more probable than the others, but the
conditional distributions given a particular input do not differ
significantly. In the weaker scattering case (left panel) the
conditional distributions show much more variation, thus one
would expect more MI in this case. Indeed the amount of MI
versus the separation, d,, of pixels in the nine spot output
pattern is shown in Fig. 2(c) and indicates that there is always
more information in the weak scattering case (left panel)
compared to the stronger scattering case (right panel). These
graphs also show that the information is not uniformly spread
across the speckle image for weaker scattering: more infor-
mation is contained at a distance of around 100 pm from the
center, where the output speckle varies more versus dynamic
disorder. The uniform value of the MI in the strong scattering
case indicates that the speckles now vary uniformly across the
camera image plane when the disorder is changed.

IV. IMAGING THROUGH SCATTERING MEDIA
BEYOND THE MEMORY EFFECT

The presence of MI, however, does not of course guar-
antee the existence of an easy procedure for its recovery.
We show that these statistical dependencies can be picked
up by an ANN that is trained to transform output speckle
patterns into (unseen) input images of objects placed before
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FIG. 2. Numerical simulations and mutual information between
input and output intensity patterns. Left column corresponds to
the phase masks with a height standard deviation of 1.3 um, right
column to 13 um. (a) Examples of the input and output simulated
patterns used for MI estimation. FWHM of the input spots is 20 um.
The separation between their centers is 40 um. The speckle images
have 1x1 mm field of view. (b) Joint PDFs showing the number of
occurrences of a particular input and output pattern pair. (c) MI in
bits calculated from the PDFs. d, is the separation of the pixels in the
output pattern see Supplemental Material [30] for the exact model
description. (d) Examples of the image reconstruction through an
unseen phase-mask realization: Top row shows the input images, the
lower row shows the reconstructed images. The reconstruction MSE
is 0.059 and 0.078 for the left and right panels, respectively.

the scatterer. We first verified this on our numerical model.
We calculated the speckle patterns in the bilayer phase mask
simulation with the first 1000 MNIST digit images being the
input and changing the disorder for each consecutive input
image. We repeated this process 32 times using an indepen-
dent set of phase-masks each time to form a dataset of 32 000
speckle/digit-image pairs, which was then used to train a U-
net ANN. The imaging performance was tested on a separate
set of speckle-image pairs, where neither the input images nor
the disorder realization has been used in a training dataset.
Examples of the testing results are shown in Fig. 2(d). The left
panel for the weaker scattering case clearly shows the ability
to recover unseen images even in the absence of any linear
correlations. As one might expect from Fig. 2(c), the stronger
scattering case that has a lower MI, also shows worse image
reconstruction although, even with just one bit of MI, the main
features are still recognizable. We also experimentally veri-
fied these findings. We measured the output speckle patterns
corresponding to 1000 MNIST digit input images [32], with a
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FIG. 3. Image reconstruction results. (a) Examples of ground
truth images (unseen during ANN training) together with image re-
constructions (after training on 95 different disorder configurations)
with one diffuser and two diffusers. (b) Reconstruction mean-squared
error (MSE) for increasing number of disorder configurations used
for training, showing how MSE improves continuously with increas-
ing number of training configurations for unseen images.

digital mirror device (DMD) used as an SLM and repeated this
by translating the scattering medium in the transverse plane
for 96 different nonoverlapping regions. Therefore, each of
the 96 repetitions involves completely different microscopic
realizations of the random medium, albeit with the same av-
erage property, i.e., grit. This data are used to train a U-net
ANN [27], following the same architecture explained in detail
in Ref. [28].

Examples of ANN image reconstruction of digits (unseen
during the training) are shown in Fig. 3(a). The top row shows
ground truth examples with the reconstruction with just one
diffuser (middle row) and then for two diffusers (lower row)
from which it can be seen that despite the absence of ME, the
ANN is still able to reconstruct hidden images successfully.
As shown in Fig. 3(b) the reconstruction mean squared error
continues to decrease with the number of disorder configura-
tions used for training. Moreover, the MSE for both one and
two diffusers decreases at a similar rate and with the same
absolute values. This indicates that the ME is never actually

playing a major role in the ANN reconstruction, regardless of
its presence. This is rather surprising as one might expect a
strong linear correlation property to be the dominant feature
captured by the high-dimensional interpolation properties of
ANN:S. Rather, our findings indicate that the ANN is extract-
ing information from the nonlinear dependency and possibly
not only here, but also in previous studies that relied on simple
single-scattering systems [27,33].

V. CONCLUSION

We showed the presence of statistical dependencies beyond
linear correlations within the optical scattered intensities by
calculating the MI of an input-output probability distribu-
tion for a system where no linear correlations are possible.
Recent work also showed how these ANN approaches can
be extended to imaging through not only dynamic random
media, but also at different depths and defocus conditions,
thus indicating that these results are not specific to a given
imaging system [29,33].

Looking forward, a first obvious extension would be to ap-
ply these results to imaging through inherently dynamical and
changing scattering media such as living tissue or fog. This
leads to further questions, such as how these results extend
to the case in which one physically modifies the microscopic
properties, e.g., average scatterer size rather than moving a
diffuser that has fixed statistical properties. There are also
implications for applications of scattering media for secure
encoding and transmission of information. These systems
typically rely on the fact that any given random medium is
practically unclonable and therefore acts as one-pad encryp-
tion key. However, our results seem to imply that knowledge
of the statistical properties of the scattering medium (e.g.,
the average distribution of refractive index perturbations) is
sufficient to decode scrambled information, with important
implications on the security of these encoding approaches
[34,35]. Finally, identification of the shape of the nonlinear
correlations could provide insight for their in-depth theoretical
study in analogy to the theory of linear correlations [2,3].

All the data and codes related to this work are available at
Ref. [36].
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