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Echo location is a broad approach to imaging and sensing that includes both manmade RADAR,
LIDAR, SONAR, and also animal navigation. However, full 3D information based on echo location
requires some form of scanning of the scene in order to provide the spatial location of the echo origin-
points. Without this spatial information, imaging objects in three-dimensional (3D) is a very challenging
task as the inverse retrieval problem is strongly ill-posed. Here, we show that the temporal information
encoded in the return echoes that are reflected multiple times within a scene is sufficient to faithfully render
an image in 3D. Numerical modeling and an information theoretic perspective prove the concept and
provide insight into the role of the multipath information. We experimentally demonstrate the concept by
using both radio frequency and acoustic waves for imaging individuals moving in a closed environment.
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Introduction.—In nature, detecting and locating objects
from reflected echoes is generally possible only if two or
more detectors are used. Animals such as bats or dolphins
[1] and even humans [2] can emit pulses of sound to sense
the environment they navigate through and identify objects.
RADAR and LiDAR imaging systems operate in a similar
way, albeit with electromagnetic (EM) radiation (radio
waves and light, respectively): a series of EM pulses are
used to scan and probe the scene and, by measuring the
arrival time of the return echoes and correlating this with
the direction from which they are detected, they can form a
three-dimensional (3D) estimate of the scene [3,4]. This
principle also holds for non-line-of-sight (NLOS) applica-
tions [5–9], where photon echoes of light, now scattered
from multiple surfaces along indirect paths, are analyzed
with the goal of revealing the 3D shape and visual
appearance of objects outside the direct line of sight.
Although NLOS is typically deployed with optical sources,
it has also been demonstrated with acoustic [10] and radio-
frequency (RF) sources [11].
Locating objects in space and forming an image in 3D

from their wave echoes using a single point detector
without any form of scanning is, computationally speaking,
a strongly ill-posed problem and therefore considerably
more challenging. However, recent work has shown that
echoes contain a very rich structure in the time dimension
that can be used to extract meaningful information about
the scene [12–14]. In these cases, further assumptions of
the scene are required in order eliminate ambiguities arising
from the fact that the echo is single path, i.e., the outgoing
signal reflects only once from the scene objects. This leads
to ambiguity in the form of an equal-distribution proba-
bility for the echo origin point that is spread over a spherical

dome centered on the detector and with a radius determined
by the echo arrival time. The additional assumptions
referred to above can be introduced, e.g., in the form of
additional information by means of a machine learning
algorithm that exploits the knowledge of static objects in
the scene background and a statistical knowledge of the
objects that we want to image [12,14].
The paradigm investigated here is the extension of echo

detection to multipath trajectories of the return signal. The
idea of using multipath reflections for sensing inside
buildings, through walls or out of view, especially with
RF waves, has been a topic of extensive study during the
last decade [15–22]. However, these simple geometric
approaches are typically limited to locating the position
of objects (and not imaging), e.g., of humans inside known
environments. Multipath sensing has also been combined
with Bayesian inference [23] and convolutional neural
networks [24] to localize sonic sources. In the optical
domain, multipath interference, i.e., the contribution from
light following multiple paths onto the same pixel, is
generally considered problematic and has to be accounted
for to acquire accurate depth maps [25–28]. However,
recent works have explored multipath optical sensing both
theoretically [29] and experimentally [30] by exploiting
deterministic algorithms that provide mathematical proof
for the ability to reconstruct the geometry of simple scenes
from a single location.
In this work, we provide empirical evidence that 3D

scenes can be reconstructed from temporal echoes alone.
We make use of a data-driven approach that exploits
multipath temporal echoes, i.e., echoes from waves that
are reflected multiple times from surfaces and objects
within a scene, to unambiguously reconstruct a meaningful
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3D image in a fixed scenario. We first present numerical
simulations that show how a simple artificial neural net-
work can be trained to reconstruct a 3D scene. We then
underline the importance of the multipath echoes, with a
dominant role played by the first few reflections and a
gradually decreasing importance of further bounces. These
findings are supported by an information theoretic analysis
applied to the raw multipath data that is independent of
the image retrieval algorithm. We then demonstrate our
approach experimentally. Although our method could be in
principle implemented with optical pulses, light suffers
from severe diffused reflection, which would make it very
hard to detect any optical signal after two reflections. We
therefore concentrate on GHz EM RF and kHz acoustic
waves, as these can be reflected multiple times by walls and
objects. In both cases, we are able to precisely retrieve 3D
images of a dynamic scene with a significant improvement
beyond what is achievable using single-path echoes.
3D imaging with multipath temporal echoes.—Our

approach is conceptually sketched in Fig. 1. A source
emits waves in the form of pulses that diverge with a wide
angle so as to flash illuminate the whole scene. The
emitted pulses are then reflected by the room walls and the
objects inside it and, finally, are detected by a single-pixel
sensor with time-resolving capabilities. The timing of
successive pulses is arranged so as to not temporally
overlap with any returning echoes, i.e., each outgoing
pulse and detection of return echoes are completely
separate events from the emission of a successive pulse.
The sensor collects and records the received energy over a
wide angle and provides this information in the form of a
temporal histogram. The process of pulsed waves bounc-
ing multiple times inside the room is fully deterministic:
with a complete knowledge of the distribution of objects
within the room, the room dimensions, and their reflec-
tivity, it is straightforward to predict the recorded temporal
histogram. However, solving the inverse process, namely,
the reconstruction of the scene (including room and
objects) in 3D dimensions from just the temporal histo-
gram, is ill-posed: echoes arriving to the detector at time td
are compatible with objects placed not just at a single
point (as would be desired), but rather with the whole
surface of a spherical dome represented by the equation
ðctdÞ2=2 ¼ x2 þ y2 þ z2 (where c is the speed of the
pulse). This ambiguity has been previously solved,
although only in part, by utilizing the fact that a moving
object will obscure static background objects, therefore
removing them from return echo patterns [14].
In contrast, in this work, we highlight the strength of

including multipath reflections in the data-driven solution
to solve the ambiguity issue: using not only the first
reflection but two, three, and more reflections break the
degeneracy and help the algorithm to reconstruct the
position and shape of the object in 3D with high accuracy,
thus making background objects not essential.

Numerical simulations.—We first show numerical sim-
ulations based on Monte Carlo ray tracing (see [31] for full
details). Our scene consists of a closed room with walls,
floor, and ceiling that all have the same 100% reflectivity
[Fig. 1(a)]. Inside this room, a rectangular cuboid is placed
in different positions and the scene is imaged in 3D with a
time of flight (ToF) camera providing a 2D depth map; see
Fig. 1(c). We consider that an emitter emits probe pulses in
all directions within azimuth and elevation angles θ and ϕ,
both within ½−67.5°; 67.5°�. The return echo amplitudes,
i.e., the number of returning rays per time [Fig. 1(b)], are
recorded in time at the detector that is colocated with the
emitter. Each scene is sampled with 10 000 rays per object
position, for 2000 objects positions. This provides a data set
of temporal trace-3D image pairs that we use to train a
convolutional deep neural network, shaped such as to force
information through a bottleneck (see [31] for details) to
extract features from data. We then test the neural network
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FIG. 1. (a) 3D visualization of our physical system: a rectan-
gular cuboid (yellow) moves within a room. Rays are emitted
within a pyramidlike volume and illuminate the scene. Red
arrows indicate examples of multipath reflections, which even-
tually reach the detector (blue) that records their arrival time. (b)
An example of a recorded time histogram. (c) Color-depth
encoded 3D view of the scene. (d) Mean-squared error (MSE)
with increasing multipath contributions, calculated between the
ground truth 3D scene and the neural network reconstruction,
averaged over 100 three-dimensional images. Insets show depth
image reconstruction examples obtained for one-, four-, and ten-
path events.
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with histograms that were never used during training and
render an estimate of the scene in 3D. We repeat this
analysis for an increasing number of path events, starting
from single-path until ten-path events, and we analyze the
quality of the reconstructions in terms of the mean-square
error (MSE) between the ground truth and the retrieved
images (see [31–34] for further details). To avoid speci-
ficity of the training by the deep neural network architec-
ture, we retrain the network 10 times for each path event,
such that for every training round we leave the starting
weights of the neural network random. This procedure
guarantees a slightly different image reconstruction every
time the algorithm is trained. Then, we average our
reconstruction-quality metrics over these ten networks.
Our results, summarized in Fig. 1(d), show that the
MSE decreases as the number of multipath events is
increased. In particular, we see that the first two to four
multipath echoes are the most important and significantly
improve scene reconstruction. This can be seen clearly not
only in the MSE but also in the insets to Fig. 1(d) that show
examples of a reconstruction for one-, four-, and ten-path
events. We clearly see that while for single path it is hard to
distinguish the object position due to blurring arising from
the above mentioned ambiguities, multipath information
cures this problem and allows to clearly resolve the 3D
scene (see [31] for further examples). We quantify the gain
in information when including an increasing number of
paths using the concepts of Shannon entropy, mutual
information, and joint entropy as derived in information
theory [35–37]. The Shannon entropy gives the expectation
value of uncertainty reduction when observing a variable X
at values xi, which occur with probability pðxiÞ,

HðXÞ ¼ −
XN

i¼1

pðxiÞ log2 pðxiÞ: ð1Þ

More specifically, we take a set of 2000 examples of
individual temporal histograms from the numerical model
described above, within which we identify histogram
shapes xi that occur with probability pðxiÞ. We can then
calculate the joint entropy HðX; YÞ for single-path histo-
grams X and two-path histograms Y,

HðX; YÞ ¼ −
XM

j¼1

XN

i¼1

pðxi; yjÞ log2 pðxi; yjÞ: ð2Þ

This can be extended to calculate the joint entropy for
data containing < n bounces and < ðnþ 1Þ bounces. The
mutual information, IðX;YÞ, then describes the information
shared by the two random variables due to correlations
within the data,

IðX;YÞ ¼ HðXÞ þHðYÞ −HðX; YÞ: ð3Þ

We rearrange Eq. (3) to find the additional uncorrelated
information, U, in the multipath data Y, i.e., the mutual
information IðX;YÞ subtracted from the total information,
HðYÞ. In other words, the additional information that is
gained by including photons from a second or multiple
reflections/paths is given by UðX;YÞ ¼ HðX; YÞ −HðXÞ.
Figure 2(a) shows UðX − 1;XÞ in log scale for increas-

ing number of reflections/paths. As can be seen, significant
additional (uncorrelated) information is gained from the
second and third reflections but becomes negligible after
four reflections. Remarkably, in this configuration, U for a
two-path signal is larger than the information contained in
the direct one-path (standard LIDAR, single reflection)
signal. An intuitive insight into understanding this gain in
information from multipath data is shown in Fig. 2(b): the
3D dimensional rendering of a scene, as would be observed
by a camera placed at the detection point, appears very
similar to what would be observed in a room of mirrors.
The first reflection (in black) provides only direct line-of-
sight information of the object; the first four reflections (in
red) show different effective viewpoints (side view and
back view) that would otherwise be inaccessible and
therefore increase the information; all successive reflec-
tions (in light blue) are replicas of the first four reflections
and do not contain additional useful information. That said,
we underline that in real-life scenarios, the noisy-channel
coding theorem [35] indicates that adding redundant
replicas of information in the form of higher order paths
could still lead to preservation of information that is lost
due, e.g., to measurement noise.
Experiments.—We show the validity of our approach with

experiments using two different sources of waves, namely,
GHz RF and kHz-frequency acoustic pulses. The exper-
imental setup in both cases is identical to Fig. 1(a), where the
emitter/detector is an RF antenna or a speaker and micro-
phone, for the RF and acoustic experiments, respectively.

(b)(a)

FIG. 2. (a) The gain in information when including photons in
the temporal data which have experienced an increasing number
of reflections within the scene. (b) A simulation of a multipath
scene as would be viewed by a camera. The various reflections
show different viewpoints of the mannequin therefore intuitively
explaining why multipath echoes contain additional information
but also why beyond the fourth bounce, there is little or no gain of
information (see text for details).
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For the experiments with RF waves, we use a transceiver
module (TI-AWR1642), which operates in the frequency
modulated continuous wave regime [38], with a range
resolution and maximal unambiguous range of 4.4 cm and
9 m, respectively. The transceiver probes the scene with an
angular aperture of 20° in the vertical plane and 180° in the
horizontal plane (−3 dB FWHM). An analog-to-digital
converter samples the signal with 120 ns temporal reso-
lution and 133 Hz rate.
The experiments were conducted with a human individ-

ual walking around in a room with approximate dimensions
of 3 × 4 × 2.5 m3. The echo recordings from the RF
antenna are acquired in parallel to 3D (ground truth)
images via a ToF camera (Basler), which provides
80 × 60 pixel color-encoded depth images.
For the acoustic measurements, we replace the RF

antenna with a PC speaker (Logitech Z333 system, con-
sisting of two speakersþ one subwoofer) and a PC micro-
phone (integrated in a Logitech C270 webcam). The
speakers emit a pulsed wave with center frequency of
5 kHz (λ ≈ 6.7 cm) and a bandwidth of 1 kHz, with
duration of 50 ms and repetition rate ≈10 Hz. The micro-
phone, colocated with the speakers, records the returning
echoes for 100 ms at a sampling rate of 192 kHz. The data
are Fourier filtered so as to select only signals at
ð5� 0.5Þ kHz. The ToF 3D camera used to train the deep
learning algorithm was an Intel Realsense D435 capturing

64 × 64 color-encoded depth images. The room used for
this experiment had dimensions 7 × 6 × 2.5 m3. Note that
the recording time window in both cases, respectively, of
80 ns and 100 ms for the RF and acoustic experiments, is
long enough to ensure that the waves can reach the furthest
corner of the rooms and return to the detector.
For both the RF and acoustic measurements, we use the

pairs of ground truth ToF images and RF (or acoustic) echo
temporal traces to train a deep learning algorithm based on
convolutional layers followed by a rectified linear unit
activation function (see [31] for details). We use 9000 and
5000 pairs of data for training the neural networks for RF
and acoustic data, respectively, after which, full 3D images
can be retrieved from a single (previously unseen) RF (or
acoustic) temporal trace.
Figures 3(a) and 3(b) show the results for the RF and

acoustic cases, respectively (see also the Supplemental
Material [31] Ref. [39] for videos). To explore the role of
multipath events, we trained and tested our neural network
with successively increased temporal extension of the time
histograms: truncation of the data at short times corre-
sponds to single path data, calculated as the ToF to the
farthest wall in the room. We increase the truncation time
(indicated in the figures) by evaluating the longest ToF
value for two-path and three-path events in the room so as
to include two and three bounces, thus gradually increasing
the information from higher order path contributions.
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FIG. 3. (a) RF and (b) acoustic results. The top rows of (a) and (b) show the time histograms that are truncated at increasing times,
therefore including an increasing number of multipath echoes. The last plot of first rows show the quality of the image reconstructions in
terms of MSE compared to the ground truth for a set of 100 scenes, for increasing multipath events. The second row in (a) and (b) shows
the corresponding images retrieved with the deep neural network and the ToF camera ground truth image.
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The retrieved 3D scenes [second row in Figs. 3(a) and 3(b)]
show that networks trained solely on one-path events [first
column of Figs. 3(a) and 3(b)] struggle to provide a sharp
3D image as there are many possible scenes that correspond
to the same single-path time histogram. Increasing the
number of multipath events provides an increasingly
improved reconstruction. This improvement can be quan-
tified by calculating the MSE between the retrieved image
and the ground truth, averaged over 865 and 500 different
measurements, for RF and acoustics, respectively. The
MSE in Figs. 3(a) and 3(b) (far-right graph) decreases
monotonically with increasing multipath contributions, in
good agreement with our modeling and experimentally
shows the significant 3D imaging capability achieved with
multipath temporal echoes. Note that our technique can
exploit training on a single individual to operate success-
fully on different individuals, recovering general shape and
position; see [31]. In this work, we focused only on
imaging human individuals. Evidence from other work
suggests that training with additional objects and geomet-
rical shapes should also be possible [14] and generic
imaging functionality has been shown in a different but
related multipath setting [40].
Conclusions.—In summary, we have shown that multi-

path temporal echoes and deep learning can be used to
provide full 3D images of a scene. Applications of these
ideas might be found in imaging in closed environments so
as to enable efficient generation of multipath echoes, e.g.,
with health care applications for homes and hospitals of the
future. Interesting developments might include the gener-
alization to dynamic background scenarios, to open-air
scenes, and to scenes incorporating information from
different viewpoints, thus opening applications in NLOS
imaging and 3D mapping of complex object geometries.
More in general, multipath echo imaging offers interesting
opportunities, considering that RF antennas can also be
extremely compact (and are currently present in cell
phones) and that the acoustic results were obtained with
standard computer speakers and microphones, thus effec-
tively transforming everyday household items into full 3D
imaging systems.
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