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Solitons propagating in media with higher-order dispersion will shed radiation known as resonant
radiation, with applications in frequency broadening, deep UV sources for spectroscopy, and fundamental
studies of soliton physics. Using a recently proposed equation that models the behavior of ultrashort optical
pulses in nonlinear media using the analytic signal, we find that the resonant radiation associated with the
third-harmonic generation term of the equation is parametrically stimulated with an unprecedented gain.
Resonant radiation levels, typically only a small fraction of the soliton, are now as intense as the soliton
itself. The mechanism is universal and works also in normal dispersion and with harmonics higher than
the third. We report experimental hints of this superresonant radiation stimulated by the fifth harmonic
in diamond.
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Introduction.—The process of resonant radiation emis-
sion in nonlinear media is extremely general and has been
studied in many different systems, like solitons in fibers and
bulk media [1–6], 3D light bullets [7–9], dispersive shock
waves [10], resonators [11–15], and complex scenarios
combining a mixture of the above [16]. This emission is
dictated by a nonlinear momentum conservation; i.e., the
requirement is that the momentum of the pump is equal to
the linear momentum of the dispersive wave propagating in
normal dispersion [2,4,5]—known as the phase-matching
condition. For a system governed by the nonlinear
Schrödinger equation (NLSE), it can only occur when a
third (or higher) order dispersion term is present. In a recent
work, Conforti et al. proposed an equation for the analytic
signal of an electric field that is formally similar to theNLSE
but does not suffer from many of the limitations of the latter
[17] and only relies on the reasonable assumption of
neglecting backward propagating waves [18]. This equation
has been found to predict features of the nonlinear inter-
action between light and matter that were not present in the
original NLSE, related to the so-called negative-frequency
components of the pulse [19–23]. In Ref. [17] the authors
discuss new phase-matching conditions that arise from the
new nonlinear polarization terms in their equation, and they
theoretically predict the emission of the so-called negative
resonant radiation (NRR) and third-harmonic resonant
radiation (THRR). The former had been previously identi-
fied experimentally by Rubino et al. [19]; see also Ref. [24].
However, the new THRR term was located in the deep
infrared region of the spectrum for the system analyzed
(fused silica), where it was not efficiently fed by the pump
and thus has never been observed.
In this Letter we explore the possibility of promoting the

THRR signal into a very strongly resonant mode. When the
THRR frequency is close to a higher-harmonic frequency, a
surprisingly large amount of the pump energy can be

transferred to the radiation via a stimulated process. This
is a two step mechanism: the pump releases energy to a
higher harmonic, and the higher-harmonic energy is then
transferred to the resonant THRR mode. This mode then
appears as a sharp, intense peak in the output spectrum. The
surprising property of this novel radiation, which we dub
superresonant radiation (SRR), is its extremely powerful
gain dynamics and the unprecedented transfer of energy
from the soliton to the radiation itself—setting the SRR
apart from any currently known dispersive wave emission,
with interesting potential uses in frequency conversion
applications. In the final part, we show a clear experimental
hint of SRR in diamond, where intense pulses in normal
dispersion are used to excite the THRR, which is then
promoted to SRR when its frequency is close to the fifth
harmonic of the pump.
Governing equations.—The equation proposed by

Conforti et al. [17] is, in dimensionless units,
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where A ¼ Aðξ; τÞ is the envelope of the analytic signal
of the electric field, ξ and τ are the dimensionless space
and time variables (scaled with the second order dispersion
length LD ≡ t20=jβ2j and the input pulse duration t0,
respectively), D̂≡P∞

m¼2 bmði∂τÞm=m! is the dispersion
operator, bm¼ βm=ðjβ2jtm−2

0 Þ are the normalized dispersion
coefficients, ϕ≡ κξþ μτ, κ ≡ ðβ1ω0 − β0ÞLD is a crucial
parameter that measures the difference between the group
and phase velocities, μ ¼ ω0t0 is the normalized pulse
frequency, β1 is the inverse group velocity, β0=ω0 is the
inverse phase velocity, LD ≡ t20=jβ2j is the dispersion
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length, and ω0 is the central frequency of the pulse.
Equation (1) has been successfully applied to optical fibers,
crystals [17,21], and fiber or microring cavities [22].
The analytic signal E ¼ A expðiβ0z − iω0tÞ is the pos-

itive frequency part of the electric field E, which can be
written as E ¼ ðE þ E�Þ=2, an equal mixture of positive
and negative frequencies [20]. In the absence of nonlinear
interactions, the fields E and E� are completely decoupled,
but the nonlinear polarization in Eq. (1) mixes both fields in
a nontrivial way. The first term of the polarization inside the
square brackets in Eq. (1) corresponds to the usual Kerr
term. The third term is the third-harmonic generation, and
the second is the so-called negative-frequency Kerr term
[17]. The subscriptþ in Eq. (1) means that spectral filtering
must be performed since A must contain only the positive
frequency components [17,21,22,25,26].
In Ref. [17] all of the phase-matching conditions for the

emission of resonant radiations have been derived—there
are three in total, one associated with each term of the
nonlinear polarization:

DðΔÞ ¼ 2mκ − ð2m − 1Þq; ð2Þ

where q ¼ 1=2 is the normalized power of the incident
pulse and m ¼ 1 for NRR, m ¼ 0 for the usual RR, and
m ¼ −1 for the THRR; see also Ref. [17]. DðΔÞ ¼P∞

n¼2 bnΔn=n! is the Fourier transform of the dispersion
operator, where Δ is the dimensionless detuning between
pulse and radiation. Since, in experimentally accessible
conditions, κ ≫ q, if we are in deep anomalous dispersion
(b2 < 0 and all other dispersion coefficients can be
ignored), DðΔÞ≡ b2Δ2=2 ≤ 0 and neither the phase
matching for RR nor the one for NRR can be satisfied;
see the blue solid curve in Fig. 1. However, the phase
matching for THRR can be fulfilled for two values of the
detuning, one positive and one negative (see the blue solid
curve and the dots showing crossings in Fig. 1). In the same
figure, we can see that when we include b3, all three phase-
matching conditions can be satisfied for values of Δ > 0,
and there are three different detunings for which we expect

to find THRR; see the dashed black curve and the dots
showing the crossings in Fig. 1.
We have numerically found that, when the position of the

THRR is close to the third harmonic that is created by the
pump as it propagates through the medium, the radiation
will grow rapidly and appears as a narrow, very intense
peak in the spectrum in the position predicted by the phase-
matching condition (2), with m ¼ −1. At variance with
previously known dispersive wave emissions in fibers or
bulk, this is a two step mechanism: the pulse gives energy to
its third harmonic during propagation, and most of this
energy is then transferred to the phase-matched THRR
closest to the third-harmonic frequency. This last step can
only occur if the THRR is spectrally located close to the
third-harmonic frequency (see the purple oval in Fig. 1).
We therefore say that the THRR has been “promoted”
to SRR. This effect is extremely efficient: the third
harmonic never manages to fully grow since the THRR
continuously absorbs almost all of its energy, leading to the
formation of an extremely intense and spectrally well-
localized SRR peak. We have also checked to see that the
possible emission of backward RR (which has its own
phase-matching condition, and is far detuned and therefore
very weak) is not detrimental to the formation of SRR [see
also Fig. 6(c)].
Numerical simulations.—Figure 2 shows the evolution in

the time domain of a sech pulse with b2 < 0, b3 ¼ 0,
μ ¼ 5, and κ ¼ 10 after ξ ¼ 10 dispersion lengths. These
parameters are chosen in such a way that the THRR is
phase matched at a frequency between the pump
(ω=ω0 ¼ 1) and its third harmonic (ω=ω0 ¼ 3), around
ω=ω0 ∼ 2. An oscillation appears on the top of the pulse in
the time domain and then moves faster than the soliton, thus
creating a leading oscillating tail. These violent intrasoliton
oscillations are characteristic of the SRR.
The spectral evolution of this pulse is shown in Fig. 3.

The spectrum develops a very intense peak at the position
predicted for the THRR; see Eq. (2). This starts as a small
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FIG. 2. Soliton in the time domain after a propagation of
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on top of the pulse that leave it through the leading edge. The
parameters are b3 ¼ 0, μ ¼ 5, and κ ¼ 10.
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peak in the third-harmonic peak but keeps growing with
propagation, as energy is sucked from the third harmonic.
Note that, for ξ ¼ 100, this peak has grown to be more
intense than the pump pulse. The THRR is parametrically
stimulated by the third harmonic and is promoted to SRR.
If the phase-matched THRR frequency is a bit outside
the third-harmonic band, an important growth can still be
observed; however, the THRR stimulation becomes
increasingly weaker.
In Fig. 4 we show the XFROG spectrograms of the pulse

evolution for ξ ¼ 2.5, 5, 7.5, and 10, again for the case
b3 ¼ 0. The third-harmonic radiation has two components,
one that propagates alongside the pulse and another one
leading it (“no. 1” and “no. 2,” respectively). The SRR
extends between these two components of the third
harmonic, confirming our hypothesis that SRR is THRR
stimulated by higher harmonics.
When b3 ¼ 0.15 ≠ 0, the situation changes significantly.

As seen in Fig. 1, Eq. (2) predicts two (normally dispersive)
phase-matched frequencies near the third harmonic (see the
intersection between the black dashed line and the

horizontal THRR line). Output spectra for the case b3 ≠
0 are shown in Fig. 5. Two peaks appear at the positions
predicted by the phase-matching conditions, with the one
closer to the third-harmonic frequency growing much faster
than the other. Again, the radiation peak closer to the third
harmonic (which is inside the purple oval in Fig. 1) is a
stimulated THRR which is then promoted to SRR.
Experimental hints of SRR.—We now show initial

experimental evidence of THRR stimulated by the fifth
harmonic in diamond. Odd harmonics higher than the third
are generated in the sample during propagation due to
cascaded four-wave mixing, for which the third-harmonic
generation term of Eq. (1) is responsible. This term initially
merges three photons of the pump with frequency ω0 into a
single photon with frequency 3ω0, and then this secondary
photon with two other photons of the pump, so that a pulse
of frequency 5ω0 is created. Therefore, we expect the
resonant radiation coming from the third-harmonic term to
be stimulated by any cascaded higher odd harmonic, albeit
the resulting SRR would have smaller amplitude due to the
decreasing intensity of higher harmonics. The use of the
fifth harmonic instead of the third is useful in some
materials due to the unclean spectra surrounding the third
harmonic when pumping with very high energies. In
diamond (normally dispersive) we cannot propagate
solitons. The emissions in this case are shock-front-assisted
resonant radiations [27]. The specific nature of the pulse
generating the resonant emission is not important since the
phase-matching conditions still hold. SRR is a general
phenomenon that appears whenever a nonlinear system that
exhibits cascaded higher-harmonic generation allows for
resonant radiation associated with the higher-harmonic
generation term (for a similar process occurring in χð2Þ
media, see Refs. [28,29]).
We have used 50 fs pulses injected in a 500 μm bulk

diamond. An amplified Ti:sapphire laser with the central
wavelength λ0 ¼ 785 nm is used to pump an (OPA,
TOPAS-C, Light Conversion Ltd.) producing infrared light
pulses whose wavelength can be tuned between 1750 and
2050 nm, with a repetition rate of 100 Hz and a pulse
duration of 70 fs. The IR pulses are focused with an f ¼
150 mm lens to a spot radius of ∼36 μm providing a peak
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intensity of I ¼ 28 TW=cm2. A single crystal diamond cut
along the h100i axis is used to study the dynamics of the
THRR vs the pump wavelength. The output of the diamond
crystal is imaged onto a spectrometer (Andor Shamrock
303i spectrometer and iDus CCD camera) providing visible
spectrum data. In order to isolate the fifth harmonic from
the intense third-harmonic contribution and also have
enough dynamic range, the high frequency component
(λ < 510 nm) is blocked inside the spectrometer.
In Fig. 6(a) we show the high-energy part of the output

spectrum after L ¼ 500 μm propagation when varying the
input pulse wavelength from 1750 to 2050 nm. We can
observe the fifth-harmonic peak shifting linearly towards
longer wavelengths, as expected [see the red solid line and
the red squares in Fig. 6(a), which shows the pump wave-
length times 1=5]. However, an additional peak is observed
which shifts towards shorter wavelengths when the pump
wavelength is increased. The latter peak is due to THRR, as
shown by the perfect agreement with the predicted THRR
position [the black solid line and the black dots in Fig. 6(a)].
The prediction is based on the THRR phase-matching
condition in normal dispersion and in the presence of the
shock term, as in Ref. [27]. When the THRR and fifth-
harmonic peaks have similar frequencies—i.e., when the
pump wavelength is ∼1960 nm—the THRR amplitude
grows considerably, with a conversion efficiency larger
than −50 dB from the pump. We have checked via an
accurate phase-matching analysis to see that such enhance-
ment is not due to a phase-matched, cascaded fifth-harmonic
generation. The normal dispersion of diamond does not
allow the formation of a soliton; i.e. the pulse intensity will
quickly decrease in propagation; yet these results show that
the phenomenon of SRR “promotion” is very general and
relies only on the crossing of the THRR emission with a
higher-order harmonic.
Figure 6(b) shows the peak intensities of the fifth

harmonic and THRR taken along the red and black solid
lines from Fig. 6(a), respectively. There is a clear enhance-
ment of the peaks at the point at which their emission

wavelengths are overlapped (λp ∼ 1960 nm), and signifi-
cant enhancement of the combined peak [∼40% larger than
predicted; see the blue dashed line] indicating the production
of a stimulated SRR. Figure 6(c) shows the phase-matching
curves of all of the radiations in diamond for λp ¼ 1960 nm.
Backward RR (the green dashed line) is unimportant since it
would be phase matched at very short wavelengths
(106 nm). The THRR is predicted at 390 nm, overlapping
with the fifth harmonic, as seen in the experiment. Phase-
matching curves are not straight lines due to the strong
contribution of the shock term for high intensities and
normal dispersion; see Ref. [27]. The conversion efficiency
from the pump pulse to the SRR peak is estimated to be
∼10−5 due to the short propagation distance and the rapid
intensity drop in normal dispersion. However, this is an
important proof of concept of the SRR formation, which is
open to improvements once the appropriate materials and
waveguides that are able to phase match SRR over long
distances are found.
Conclusions.—We have shown that the THRR can be

stimulated by a higher harmonic when the two are spectrally
close. The resonant radiation peak could grow indefinitely in
a stimulated fashion, with its amplitude even becoming
higher than the pump itself in some cases. We have seen
experimentally some preliminary hints of SRR in diamond,
where a very intense pulse propagates in normal dispersion
and the radiation is stimulated by the fifth harmonic. Our
findings could lead, by using appropriate waveguides or
bulk crystals, to superefficient frequency conversion effects.
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