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Measurements of the spatio-temporal and far-field profiles of ultrashort laser pulses experiencing conical
emission, continuum generation, and beam filamentation in a Kerr medium outline the spontaneous formation
of wave packets with X-like features, thus supporting recent numerical results �M. Kołesik, E. Wright, and J.
Moloney, Phys. Rev. Lett. 92, 253901 �2004��. Numerical simulations show good agreement with experimen-
tal data.
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The dynamics of intense optical wave packets and the
formation of apparently localized states in transparent non-
linear media have attracted major attention since the earliest
stages of nonlinear optics �2–4�. The topic is still hotly de-
bated, especially in view of forseeable applications �5,6� re-
lated to long-range self-channeling of ultrashort laser pulses
in air �7–9�, as well as for the interest of the localization
process in different physical systems �e.g., Bose-Einstein
condensates� which exhibit similar wave dynamics �10,11�.
Solitons have been considered as the favored candidates for
long-range, localized propagation. However, several mecha-
nisms occur which make multidimensional �e.g. 2D spatial
or spatiotemporal� solitons virtually inaccessible in real set-
tings. Among these we quote spectral broadening, leading to
important dispersive effects in normal group-velocity disper-
sion �GVD� �e.g., pulse splitting, self-steepening, etc.�, and
nonlinear losses �NLL� �12,13�, which dominate in the case
of 3D localization �in the regime of anomalous GVD�. Pre-
liminary experiments on spontaneous spatio-temporal local-
ization in normal-GVD ��2� media raised the hypothesis of
the existence of a stationary and weakly localized state sub-
stantially different from the spatiotemporal soliton, called the
nonlinear X �NLX� wave �14�, which appears as the exact
stationary solution of both the ��2� and the nonlinear-
Schrodinger-equation �NLSE� models �15�. NLX waves ex-
tend to the nonlinear regime the concept of linear X-waves,
which are stationary and weakly localized wave packets
�WP� in dispersive media made by the coherent �i.e., phase-
locked� superposition of monochromatic Bessel beams with
different frequencies at different cone angles �16�. An impor-
tant characteristic of X-waves for their observation is that
both the near and the far field exhibit a biconical shape. NLX
waves belong to the general family of NL conical waves;
other examples are the unbalanced Bessel beams �UBB�
�17�, in the monochromatic regime, and the nonlinear
O-waves �NLO� �18�, in the case of 3D spatiotemporal local-
ization in anomalous GVD. The inherent robustness against
nonlinear losses �17�, a key feature of the NL conical wave,

is a straightforward consequence of the self-regenerating
property of the Bessel beam and plays an essential role in
supporting the above-mentioned long-range propagation of
the light filaments �19,20�. All these features make NL coni-
cal waves a very promising concept, alternative to the soli-
ton, for understanding spontaneous dynamics and localiza-
tion processes in several physical systems, ranging from
optics to acoustics, spin waves, etc.

In optics, centrosymmetric materials are expected to ex-
hibit a much more complex pulse propagation scenario than
��2� media, due to the higher saturation threshold that leads
to the presence of higher-order dispersive and NL responses.
This makes the prediction based on the simplest form of the
NLSE model �15,21� �i.e., accounting only for Kerr nonlin-
earity, diffraction, and GVD� not necessarily adequate for
modeling real physical systems. By examining the angular
spectrum �� ,�� of the evolving pulse as calculated from nu-
merical simulations accounting also for plasma and higher-
order dispersion, Kolesik et al. �1� have recently predicted
spontaneous formation of X-waves for ultrashort-pulse
propagation in water and interpreted the observed long-
distance filamentation �22� in terms of X-wave dynamics.
These results provide a relevant indication of the robustness
of X-waves with respect to the presence of higher-order ef-
fects. However X-type angular spectra could be obtained as a
consequence of the spatiotemporal modulational instability
even in the absence of any regular, coherent �i.e. phase-
locked� structure in the near field, as recently shown for the
��2� instability of extended waves �23�. These considerations
leave the question of the spontaneous evolution from a
Gaussian to an X-type wave packet �WP� in Kerr media still
open. In this Brief Report, by using a nonlinear 3D mapping
technique �24� we measure the wave-packet profile in the
space-time domain, thus outlining the complicated dynamics,
initially dominated by NLL, then by self-focusing and pulse
splitting, finally leading to the formation of an X-like profile
superimposed on a background of radiation generated by the
initial dynamics.

In our experiments, filamentation was induced in the wa-
ter sample by launching 160 fs pulses with wavelength cen-
tered at 800 nm. Similar measurements have been carried out*Electronic address: daniele.faccio@uninsubria.it
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using a pump wavelength of 527 nm �25�. However, due to
the nearer absorption band edge, NLL played an important
role �26� and the GVD-dominated X-wave formation was
difficult to highlight in the near-field, both experimentally
and numerically, as also pointed out in �1�. The pulses were
loosely focused onto the water-cell input facet with a 50 cm
focal-length lens �the beam diameter at the cell input was
80 �m Full width at half-maximum� and an input energy of
Ein=3.3 �J. If we define the input critical power necessary to
observe self-focusing as Pcrit=3.77�2 / �8�n0n2� �� ,n0,n2

=4.1�10−16 cm2/W are the vacuum wavelength, linear, and
nonlinear material refractive indices, respectively� �27�, then
the input power is Pin�11Pcrit. An initial set of measure-
ments was peformed in which we characterized the angular
spectra �� ,�� for various propagation lengths �L� by collect-
ing the whole filament with a lens, placed so that the Fourier
plane falls on the entrance slit of an imaging spectrometer
�MS260i, Lot-Oriel�. The output �� ,�� spectrum is then re-
corded on a 16-bit CCD camera �DU420, Andor�. Figure 1
shows the dynamics from the input pulse �a� to a generally
widened spectrum at L=1 cm �b�, followed by the appear-
ance of colored conical emission, i.e., structures with a defi-
nite �� ,�� dependence, at L=2 cm �c�. Further propagation
leads to an intense axial continuum generation at L=3 cm
�Fig. 1�d�� along with the strengthening of the conical emis-
sion, with the appearance of X-like features, albeit with a
marked asymmetry �the redshifted long X-tails seem to be
missing�. This angular dispersion results from the interplay
between the Kerr nonlinearity, diffraction, and chromatic dis-
persion, or, analogously, from a strong space-time coupling.
Therefore, a complete and correct characterization of the
filamentation process, in the present regime, can only come
from a full spatiotemporal mapping of the evolving WP pro-
file. Note that this is a different regime with respect to pre-
vious experiments �17,20�, which were dominated by purely
spatial effects.

In order to perform such measurements, we resort to a
new technique, called 3D mapping �24�, that is based on a
nonlinear optical gate and which has been used with success

to characterize X-wave formation in ��2� materials �28�. Us-
ing this technique, we followed the pulse evolution by com-
pleting a measurement in the same input conditions of Fig. 1.
Figures 2�a�–2�d� show the resulting space-time �r , t� inten-
sity profiles for propagation distances of 0 cm �input beam�,
1 cm, 2 cm, and 3 cm, respectively. The input pulse �Fig.
2�a�� is formed by a main peak, followed by a train of lower
intensity satellite pulses, which appear due to the complex
optical system specifically installed for locking the input
laser-pulse energy at a fixed level, as mandatorily required
for precise noise subtraction in the detection. These have
been isolated by a dashed circle in all graphs as they do not
participate in any of the nonlinear processes �note that they
do not always seem to have the same intensity due to a
residual fluctuating background noise related to unavoidable
self-generated continuum emission�. In the first cm of propa-
gation �Fig. 2�b��, the pulse undergoes space-time reshaping
featured by a notable depletion of the central peak, as ex-
pected from the effect of NLL and/or plasma defocusing.
During the second cm �Fig. 2�c��, the pulse propagation is
dominated by Kerr effects and a strong self-focusing is ob-
served. Finally, at L=3 cm �Fig. 2�d�� we observe a trace of
pulse splitting but also the formation of a symmetric

FIG. 1. Experimental �� ,�� spectra for various water cell
lengths �L�. �a� Input pulse, �b� L=1 cm, �c� L=2 cm, �d� L
=3 cm. The input energy is 3.3 �J.

FIG. 2. �Color online� Experimentally measured space-time
�r , t� profiles of a pulse in a Kerr medium �water� for different
propagation distances in logarithmic scale �the shaded bar indicates
the intensity-level decade�: �a� input pulse ��=160 fs, diameter
=80 �m�, �b� L=10 mm, �c� L=20 mm, and �d� L=30 mm. Input
energy is 3.3 �J.
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X-shaped structure �highlighted by solid lines� featured by a
central peak and by characteristic bi-conical �clessidra-like�
tails. We interpret the presence of a rather intense axial ra-
diation at t�0 as a residual effect of the pulse-splitting dy-
namics. Further measurements at greater propagation lengths
were prevented by technical difficulties in subtracting white-
light continuum from the SF signal.

In order to gain a deeper insight into the underlying dy-
namics, we have performed numerical simulations: here we
briefly outline the model that is described in more detail
elsewhere �29�. We model the linearly polarized beam with
cylindrical symmetry around the propagation axis z by the
envelope E of the electric field E, written as E
=Re�iE exp�ikz− i�0t��, where i is the unit polarization vec-
tor, and k=n0�0 /c and �0 are the wave number and fre-
quency of the carrier wave. The input pulses are modeled by
Gaussians with parameters taken so as to match the main
near-field intensity peak, as measured experimentally �Fig.
2�a��. The scalar envelope E�r , t ,z� evolves along the propa-
gation axis z according to the nonlinear envelope equation
�30�, expressed in the time domain as

�E
�z

=
i

2k
U−1��

2 E − i
k�

2

�2E
�t2 +

k�
6

�3E
�t3 + U−1N�E� , �1�

where U��1+ �i /kvg�� /�t� and vg=�� /�k. Equation �1� ac-
counts for diffraction in the transverse plane, space-time fo-
cusing, second-, and third-order dispersion �with the relative
coefficients taken from literature �31��. No redshift has been
observed in the experiments and therefore no nonlocal term
corresponding to delayed Raman-Kerr contribution is taken
into account. Finally, the nonlinear term is

N�E� = ik0n2T2�E�2E −
	

2
�1 + i�0�c�
E − T

�K

2
�1 −





at
	

��E�2K−2E �2�

and includes the optical Kerr effect with possible shock
terms, plasma absorption, plasma defocusing, and multipho-
ton absorption. 
at=6.7�1022 cm−3 denotes the density of
neutral molecules of water, 
=
�r , t ,z� is the plasma electron
density generated by multiphoton ionization according to
�
 /�t=	K�E�2K�
at−
�, with 	K=1.2�10−52 s−1�cm2/W�5.
K=5 is the number of photons involved in the NL absorption
process, �K=10−47 cm7/W4 and 	=5.1�10−17 cm2 are the
cross sections for multiphoton absorption and inverse bre-
hmsstrahlung, respectively, �c=3 fs is the momentum trans-
fer collision time, and the operator T�1+ �i /�0�� /�t is re-
sponsible for the self-steepening of the pulse.

Figure 3�a� shows the calculated �r , t� intensity profile
after 3 cm of propagation. The scale has been chosen so as to
match the experimental dynamic range, i.e., �2 decades. As
can be seen, the numerically calculated profile matches the
experimental one quite well, the main difference being that
the central peak is not yet completely reformed. Figure 3�b�
is a plot of the same graph but now over four decades in
intensity, showing many low-intensity features that were not

revealed experimentally. In particular, we note that the cen-
tral X-like profile emerges as the peak of a vaster and weaker
underlying structure. Indeed, Fig. 3�b� allows one to specu-
late that the conical features of Fig. 3�a� result from the
interference and interaction of multiple, overlapping
X-forms, born by multiple split-off pulses.

These results suggest that the X-wave acts as an attractor
in the dynamics of femtosecond pulse filamentation, while
the pulse-splitting dynamics are a necessary step for permit-
ting an initial bell-shaped intensity, flat-phase profile to
evolve toward the X-type wave. We noticed that mutiple re-
cycling takes place, in numerical experiments �see also �32��,
when the wave packet still carries a strong memory of the
initial input condition, with a phase profile differing substan-
tially from that imposed by the conical geometry of the X
wave. We finally note that a good qualitative agreement with
the experiment was also obtained for the calculated spectra,
with �� ,�� intensity profiles similar to those shown else-
where �1�, referring to the 527 nm input-pulse case. An im-
portant difference is that here the pump wavelength is closer
to the zero-dispersion point of water ��1000 nm� so that
higher-order dispersive effects become important. Third-
order dispersion is such that a marked asymmetry between
the redshifted and blueshifted spectral X tails is observed,
with the former being nearly absent, thus explaining the ap-
parent anomaly �i.e., the missing redshifted CE� in the spec-
tra in Figs. 1�c� and 1�d�.

In summary, we have presented experimental measure-
ments, supported by numerical simulations, that map the
spontaneous transformation of a Gaussian laser pulse in a
Kerr medium. Observing the near-field evolution, it is pos-
sible to highlight different dominating effects during the
pulse propagation, leading, finally, to the formation of an
X-shaped object surrounded by a complicated background.
Indeed, our numerics indicate that the whole structure actu-
ally arises from a much broader underlying interaction be-
tween split-off daughter pulses. Each of these exhibit X-like

FIG. 3. �Color online� Numerical simulations in water at 800
nm. �a� Normalized space-time �r-t� intensity profile in logarithmic
scale �two decades�, in the same conditions as in Fig. 2�d� �Ein

=3.3 �J, L=3 cm�. �b� Same as in �a� but with intensity profile
plotted over four decades showing much weaker X features.
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features, thus supporting the hypothesis �1� of spontaneous
X-wave formation and interaction in Kerr media.
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