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Photon interference and bunching are widely studied quantum effects that have also been proposed for
high-precision measurements. Here, we construct a theoretical description of photon interferometry on rotating
platforms, specifically exploring the relation between noninertial motion, relativity, and quantum mechanics. On
the basis of this, we then propose an experiment where photon entanglement can be revealed or concealed solely
by controlling the rotational motion of an interferometer, thus providing a route towards studies at the boundary

between quantum mechanics and relativity.
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I. INTRODUCTION

The notions of space and time are at the core of modern
physics and remain an area of intense research [1,2]. A
striking example of how elementary notions of space and time
lead to surprising consequences is the derivation of Lorentz
transformations, a cornerstone of quantum field theory, utiliz-
ing only basic assumptions [3,4].

The exploration of the special-relativistic regime is histor-
ically strongly linked to investigations of the propagation of
light [5], e.g., the Michelson-Morley experiment [6]. More
recent experiments have also started to probe the quantum
nature of light, e.g., the Hong-Ou-Mandel (HOM) experiment
[7], indirectly testing the underpinning spacetime symmetries.
Quantum optical interference effects, either one photon or two
photon, are thus of fundamental importance [8], as well as
providing paths to technological applications [9].

A further test of special relativity, moving towards the
domain and ideas of general relativity, is possible in situations
where linear acceleration or rotational motion is present [10].
A notable example is the classical Sagnac experiment, where
an interferometer is placed on a rotating platform [11-13].
More recent experiments include experimental tests of pho-
tonic entanglement in accelerated reference frames [14], the
demonstration of how to overcome the shot-noise limit using
an entanglement-enhanced optical gyroscope [15], the quan-
tum Sagnac interferometer [16], and the extension of HOM
interference to rotating platforms [17].

In this article, we theoretically explore noninertial experi-
ments which require both a quantum mechanical as well as a
fully relativistic analysis. In particular, we explore the relation
between interference, entanglement, and noninertial rotational
motion. We first provide a brief overview of the conceptual
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setup and the relevant classical effect, namely, the Sagnac
effect (Sec. II). We then give the theoretical description of
quantum experiments on a rotating platform by deriving the
Hamiltonian on a generic Hilbert space (Sec. III). We apply
the theoretical description to study photon-interferometry ex-
periments and show that the developed model recovers the
results for the Sagnac effect in the quantum regime [16] as
well as for the recent demonstration of photon bunching in a
rotating reference frame [17] (Sec. IV). Finally, we propose
a modified HOM interferometer which can be readily imple-
mented using currently available technology. In particular, we
discover that simply setting the apparatus in rotational motion
can change bunching to antibunching and vice versa, i.e., one
can reveal and conceal entanglement (Sec. V).

The overall purpose of this work is thus threefold. The
first goal is to give a theoretical foundation for quantum
interferometry experiments on rotating platforms, both for
matter-wave and photon interferometry. The second is to show
that there are nontrivial consequences for the manifestation
of entanglement already at low rotation speeds which should
be taken into account for state-of-the-art sensing. Finally, the
third is that photon interferometry can be used to test the
validity of the underlying spacetime symmetries in noninertial
and genuinely quantum mechanical experiments.

II. EXPERIMENTAL SETUP

We consider an experimental platform rotating at angular
frequency 2 depicted in Fig. 1(a). The system is confined to
move on a circle of radius r in the equatorial plane normal
to the rotation axis. We further suppose there is a corotating
medium with refractive index n. For the corotating observer,
the light propagation speed is ¢/n in both directions as can be
deduced from symmetry considerations. It is also instructive
to describe the same experiment from the inertial frame of the
laboratory: One can formally map the circular trajectories to
straight-line motions as shown in Fig. 1(b) [18]. In this latter
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FIG. 1. Conceptual setup. (a) Description from the viewpoint
of the corotating observer. The counter-rotating (corotating) quan-
tities are shown on the left (right). The counter-rotating (corotating)
Hamiltonians are different, while the light speed in the two directions
is equal (c/n). D1 (D2) indicate the detectors for the counter-
rotating (corotating) direction, respectively. (b) Description from the
inertial laboratory frame represented in a straight line. Here, both
the Hamiltonian and the speed of light differ in the two directions,
ie, v # v™ and v™® # £ (bl) Only the light-drag effect is
taken into account; 7", ) denote how long it would take to reach
the detectors assuming they would not have moved; the subscript i
stands for “initial.” (b2) Both the light-drag effect and the motion of
detectors is taken into account. £{), £~ denote how long it takes to
reach the detectors; the subscript a stands for “actual.” v = rQ2 is the
speed of the detectors as seen from the inertial laboratory reference
frame.

case one has to account for the light-dragging effect [13], i.e.,
the Fizeau effect.

We now first discuss the relation between the corotating
reference frame and the inertial laboratory reference frame,
focusing on the classical effects. We start by noting that the
speed of light in the corotating reference frame, where the
corotating medium is stationary, is the same in the corotating
and counter-rotating directions; specifically, we have that the
velocities are 4. Using the relativistic velocity addition for-
mula we find the corresponding velocities u® in the inertial
laboratory frame,

) +< 40

C
= 1 o~ 4 1
T n+oev, (D

n c?

u

where v =rQ, and o =1 — n% The corresponding speeds
are given by v® ~ + +av. See Fig. 1(b) for a graphical
illustration of this light-dragging effect, which coincides with
the Fizeau effect, but could in principle differ [13].

We assume an initial spatial distance L between the sys-
tems and the detectors. We can convert L into a time distance,
i.e., the initial time distance [see Fig. 1(b1)], which is given
by ti(i) = # Furthermore, exploiting Eq. (1), we find

tl.(i) ~ %n F Z—I;anz. 2)
However, this is different from the actual time it takes the
signals to reach the detectors [see Fig. 1(b2)]: We need to take
into account also the motion of the detectors. In particular,
we have the condition v®1*) = L & vt{*), which after some
algebra readily gives

w__ L L v 3
C e )

In this way we immediately recover the classic Sagnac delay
given by t, = (") — (=) = ZCL—Z" Specifically, to find the usual

expression of the Sagnac delay, we set L = 2wrN, where N
denotes the winding number, and define the encircled area as
A = Nnr?. Using v = rQ = r27 f, we then immediately find
[10,13]

8TAf

Iy = 2 . (4)

From this discussion it is clear why the description in the
corotating reference frame is slightly more convenient: There,
only the noninertial motion of the detectors has to be taken
into account (through the Hamiltonians). On the other hand,
in the laboratory inertial reference frame, one has to account
for the motion of the detectors as well as of the medium (again
through the Hamiltonians). In short, the advantage of the
corotating reference frame is the absence of the light-dragging
effect.

Finally, we note that the Sagnac delay can be obtained also
from the perspective of the corotating observer where it arises
from clock desynchronization [10].

II1. DERIVATION OF THE HAMILTONIAN

In this section we derive the Hamiltonian for the experi-
ments depicted in Fig. 1(a): We consider a rotating platform,
which spins at angular frequency €2, and we restrict to the
dynamics on a circle of radius r, centered on the symmetry
axis of the rotating platform. Specifically, we will adopt the
methods of representation theory [19] and symplectic Hamil-
tonian mechanics [20] to map the time-evolution generator
of the Poincaré algebra to a Hilbert space operator. One
could of course make an ad hoc quantization in a noninertial
reference frame, but the results might be inconsistent with
basic symmetry requirements. Anyhow, we choose the former
method which constructs the Hamiltonian starting from basic
symmetry considerations of the Poincaré group. As argued in
Sec. I, we will for convenience describe the experiment in the
corotating reference frame.

One typically starts describing the experiments by setting
up a chart, e.g., a Cartesian chart. We note that the chosen
spacetime coordinates critically reflect the motion of the ob-
server which affects the resulting description of the dynamics.
For example, two observers moving with different speeds
or accelerations will use different charts, and hence ascribe
different energies to the same system, and hence care must
be taken with the choice of the coordinate system. In the
following, we will assume that the detectors are stationary in
the observer’s chart: With this choice there is a simple relation
between observables in the description and the quantities
measured by the detectors.

We start by recalling the quantization procedure in an
inertial reference frame, i.e., with = 0. In our case, we will
use the polar chart for the laboratory inertial reference frame.
Specifically, the line element in an inertial reference frame
expressed in the polar chart is given by

ds* = c*dt® — r*d¢?, (5)

where r is a constant in our case (we have restricted the analy-
sisto a 1 + 1 spacetime). From the line element in Eq. (5) it is
then possible to immediately read the time-evolution Killing
vector (%Bt )M [21]. The time-evolution Killing vector (more
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precisely, a vector field) is the tangent vector to the flow lines
of a system in free motion. Using the comoment map we can
then map the time-evolution Killing vector to the Hilbert space
Hamiltonian [19,20],

8 — H, (6)

where H is the representation of the time-evolution generator
on the considered Hilbert space. For example, for a single
mode & we would have A = fiwata, where w is the frequency
of the oscillator.

To apply the quantization procedure in a noninertial refer-
ence frame, i.e., with Q2 # 0, we have to make an additional
step: We have to relate the corotating reference frame to the
laboratory inertial reference frame. The reason is simple: We
do not know how to directly quantize in a noninertial reference
frame, but only in the inertial reference frame. We denote the
laboratory (polar) and the corotating (Born) coordinates by the
unprimed [x* = (ct, r¢)] and primed [x* = (ct’, r¢’)] labels,
respectively. In particular, we have the following relation [22],

dt =dr’, @)

dp = d¢' + Qadt'. (8)

It is straightforward to find the corresponding transformation

matrix,
oxH 1 0

and to express the Minkowski metric in the two coordinates
systems, i.e.,

ds* = *dt* — r’d¢? (10)

erz
= 02(1 — —2>dt'2 —2Qrdi’d¢’ — r*d¢*. (11)
c
From Eqgs. (10) and (11) we can immediately find the
relevant Killing vectors (%8,0“ =(1,0)7, (%8, k=(1,0)T,
and (}8¢)" =(0,1". Using Eq. (9) we can then express
(%3,,)1/ in the laboratory coordinates, i.e.,

L m gt L w 12
c ) T e\ ™)
which gives (%8,/ W =(1, %‘“)T, and thus

1
O =0 +rQ—0y . (13)
r

We have now expressed the time-evolution Killing vector
dy, which generates the dynamics in the corotating reference
frame, in terms of the Killing vectors o, and %8(1,, which
generate time evolution and space translation in the inertial
laboratory reference frame, respectively. We can now map the
latter Killing vectors to operators on a Hilbert space using the
usual prescription,

9 — H, (14)

1 .
~9, — P. (15)
"

Exploiting Egs. (13)—(15), we can now finally write the time-
evolution operator,

Hgomn = H + rQP, (16)

which we name the Born Hamiltonian. Note that Eq. (16)
captures the idea that the dynamics on a rotating platform
can be fully explained in terms of the noninertial motion of
the detector [18]: The term ~P keeps track of the noninertial
motion of the detector. P, which is the generator of transla-
tions, changes the relative distance between the detector and
the system, e.g., in a time &¢ the relative distance changes by
rQ26t.

We note that the transformation in Eq. (7) leaves the time
coordinate unchanged. This can be seen as a Galilean-type
transformation on a circle, which we now generalize to a
Lorentz-type transformation. In particular, we consider

7 VZQ /
dt =Tdt’ + AT —-d¢', (17)
C
dé = Brd¢' + 't (18)

1

where I' = [1 — (%)2] . If weset A=1 and B =1, the
transformation is formally equivalent to a Lorentz boost with
speed v = rQ2, while if we set A =0 and B = !, we obtain
the transformation considered by Post [13]. We find that the
Hamiltonian is insensitive to the value of A, but depends on
the chosen value of B. In the following, we set B = 1, which
leads to the Hamiltonian

ﬁrel

Born

=T'(H + rQP). (19)

Equation (19) can be seen as a relativistic Born Hamiltonian,
which generalizes Eq. (16).

We can also analyze nonuniform rotations using the above
formalism by considering a time-dependent angular frequency
2; (we remark that the time-evolution vector does not need to
be generally a Killing vector). We repeat the derivation in this
section with the formal replacements

Q- @, (20)

|: Q,rz_%
r—-rI, = l—(c> . 20

At the end we obtain in place of Eq. (19) the following
Hamiltonian,

I_’}rel

Born

(1) =T,(H + r, P). (22)

In this case one expects two physical effects, one related to the
(geometrical) Sagnac phase, and a possible new contribution
related to a dynamical phase, which typically emerges in situ-
ations where there is a time dependence in the Hamiltonian.

IV. PHOTON-INTERFEROMETRY EXPERIMENTS

We now apply the Hamiltonian in Eq. (19) to photon
interferometry. We use the Abraham relation between kinetic
momentum and energy [23,24],

~ A

H = nc|P|. (23)
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We combine Egs. (19) and (23) to find
A =T+ p)H, (24)

Born

where the positive (negative) superscript denotes the counter-
rotating (corotating) motion to be measured by the detector
D1 (D2),and 8 = % We note that Eq. (24) suggests a simple
physical interpretation of the Hamiltonian as the relativistic
Doppler-shifted energy of the system.
We can finally write the total Hamiltonian of the system,
Hgom = Hyip ® 1+ 1 © HY ) (25)

Born Born?

where we have assumed that the photons moving in opposite
directions do not interact, and I denotes the identity operators.
In summary, the total Hilbert space can be written as H =
HD @ H), where H ) (1)) denotes the Hilbert space of
the counter-rotating (corotating) modes.

The time parameter ¢ that keeps track of the dynamics
through Schrodinger’s equation is ticking as a clock following
the detectors’ motion; this is a direct consequence of the quan-
tization procedure that leads to the Hamiltonian in Eq. (25).
However, here we are mainly interested in the dominant ef-
fects where one can approximate the Lorentz factor as I" ~ 1
and the distances and times coincide to those measured by a
ruler and a clock in the inertial laboratory frame.

We now further develop the model by adopting Glauber’s
theory of photodetection [25]. Here, we will focus on the
experimental situation of photons with a coherence time that
is short compared to the time resolution of the detectors, but
temporal aspects could be easily taken into account [26,27].
In other words, here we are not concerned about when the
detectors click, but only which detector clicks. We assume that
in the detectors’ time window only one photon or one photon
pair has been measured.

To analyze photon-interferometry experiments we will
work in the Schrodinger picture [28], where we will denote
the initial (final) state with the subscripts i (f). We consider
the experimental situation where at time #; = O the photon is
prepared in a state |y;), and then constrained to move in a
circular motion for a time ¢y = %n resulting in a state [/),
where L is the traveled distance. Although one can always
postulate a given initial state, it is nonetheless instructive to
compare the state |1/;), which is assumed to be generated
by the apparatus corotating with the platform, with the state
generated by the same apparatus when the platform is not
rotating, i.e., when € = 0. In particular, it is reasonable to as-
sume that the frequencies of the initial states generated in the
two experimental situations differ by at most ~%. However,
such a difference in the initial state produces only subleading
effects which are not amplified during time evolution, as can
be explicitly verified using the formulas we will develop.
One can thus approximate the initial states generated on the
rotating platform with the states that would be generated at
Q=0.

The time evolution is given by the usual Schrodinger
equation with the Hamiltonian in Eq. (25), i.e.,

A® =p / doloPal (w)a(w) + 0 b (w)b(w)],  (26)

where we have defined ®® = (1 £ B)w, and a (b) is the
counter (corotating) mode.

The state |v/¢) then interferes at a beam splitter and one
measures the outputs using two detectors: The input modes are
a and b and we denote the output modes by ¢ and d. Here, we
consider the following relation between the input and output

modes,
Cw)y| 11 1 |[a(w)
P e Y ] A
In particular, we are interested in the probability of detecting

photons in the modes ¢ or d. To this end, it is convenient to
define the temporal modes [29],

&) = Fle)], d@t) = Fldw)], (28)

where F;[-] = LG f dw - e~ In particular, we define the
single-photon probability of detection as

PO = /dt(l//fw(t)@(t)l!ﬂf), (29)

with a similar definition for the probability Pa(,l) for the output

mode d. In addition, we also define the two-photon probability
of detection,

PO = / dn f bW 1dT e @) ), (30)

which gives the coincidence probability. For the case P® <
0.5 we speak of coalescence or HOM photon bunching and for
P® > 0.5 we speak of photon anticoalescence or antibunch-
ing. Classically, one is limited to values 0.25 < P® < 0.5,
making coincidence probabilities a valuable tool to assess the
quantum nature of the electromagnetic field. Importantly, an-
tisymmetrization and photon anticoalescence reveals hidden
entanglement, as has already been demonstrated experimen-
tally in a nonrotating setup [30].

We consider first the experimental situation with a generic
single-photon input state,

[Yr) = / dwlY, f(@)a () + ¥ ()BT (@)]]0),  (31)

where v/, r(w), ¥, r(w) are one-photon wave functions. From
Egs. (29) and (31), exploiting Eqs. (27) and (28), we find

P = % + % / doly; () (@) +c.cl, (32)
where we have imposed the normalization of the state, i.e.,
(Yrlp) = 1. As an example let us consider the quantum
Sagnac experiment [16]: A photon is prepared in a superpo-
sition of counterpropagating modes before interfering at the
beam splitter [see Fig. 2(a)]. Specifically, we consider the
initial state in Eq. (31) with the one-photon wave functions
Yai(w) = Yy i(w) = g(w), where g(w) is a Gaussian with
mean frequency u and bandwidth o. After the time evolution
using Eq. (26) we have the state in Eq. (31) with v, r(w) =
g(w)eP'r and ¥, r(w) = g(w)e P, Using Eq. (32) we find
the single-photon detection probability,

PO =11+ e 37 cos(ury)], (33)

where ¢, is the classical Sagnac delay introduced in Eq. (4). If
we now make the further approximation | g(@)]> ~ 8(n — w),
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FIG. 2. (a) Quantum Sagnac experiment [16]. The element C
denotes the circulator which allows only the paths 1 to 2 and 2 to
3. A photon enters through the path 1, is directed into path 2, and
then interferes for the first time with the beam splitter. After evolving
in counterprogating directions, the photon then interferes again at
the beam splitter, after which it is detected. (b) Hong-Ou-Mandel
experiment on a rotating platform [17]. Two identical photons coun-
terpropagate before interfering at a beam splitter. One detects the
arrival of the photons and extracts the coincidence probability P®.
In both cases, the setups are placed on a rotating platform.

i.e., 0 — 0, we then recover the results reported in Ref. [16],
. 1
i.e., PC(’; = %[1 :I: cos (ut)].

We next consider the two-photon state,

) = / do / den ¥y (@n, 02 (@)BH@)10),  (34)

where ¥y (w1, wy) is the two-photon spectrum. From Egs. (30)
and (34), exploiting Eqgs. (27) and (28), we find

1 1
P =3 =3 [ don [ donvjnonvenon. 69

where we have imposed the normalization (y¢[¢s) = 1. As
an example we consider the Hong-Ou-Mandel experiment on
a rotating platform [17]: Two identical photons counterprop-
agate before interfering at a beam splitter [see Fig. 2(b)].
The experimentalist controls the initial time delay &t of the
mode a; the initial state is given by Eq. (34) with the two-
photon spectrum V;(w;, @p) = g(w1)g(w:)e™® . After the
time evolution we find the final state in Eq. (34) with

Yi(wr, w2) = glwr)glwr)e ¥ Plen=e) —(36)

Using Eq. (35) we then immediately find the coincidence
probability,

PO =1 _ Lot 37)

=

1
2
where f, is the classical Sagnac delay.

Above, we have considered identical photons with a sep-
arable spectrum [7], but one could also consider identical
frequency-entangled photons. For example, if we consider
spontaneous parametric down-conversion (SPDC) type-I two-
photon generation [31], we again find the coincidence prob-
ability in Eq. (37). It would thus seem that entanglement in
combination with rotational motion leaves no trace on the
photon coincidence rate P® measurement. We now further
explore this question.

V. MANIFESTATION OF ENTANGLEMENT THROUGH
ROTATION

Entanglement can manifest itself in a HOM coincidence
rate measurement through anticoalescence, i.e., P® > 0.5.

FIG. 3. Layout of proposed quantum Sagnac/Hong-Ou-Mandel
interferometer on a rotating platform. Two entangled photons are
emitted from the BBO crystal: Photon a (purple arrow) enters a
Sagnac interferometer using the lower 50/50 beam splitter (BS)
and exits towards the upper 50/50 BS where two-photon HOM
interference occurs with photon b (green arrow) that circles around
the setup (in order to maintain the same overall path length as photon
a). Coincidence counts are measured between detectors PD1 and
PD2 as a function of the rotation frequency 2.

In particular, for a completely antisymmetric spectrum, i.e.,
Y(wi, w) = —¥(wy, w1), one obtains perfect anticoales-
cence, but even with a partially antisymmetric spectrum one
can have P» > 0.5, thus witnessing entanglement. As we
show below, this manifestation of entanglement may be sus-
ceptible to the motion of the interferometer.

We consider the experimental setup depicted in Fig. 3.
As an initial state we consider a SPDC type-I two-photon
state (i.e., two photons with the same polarization) with the
spectrum

Yilwr, w2) = 8(w1 + wr — 2u)g(wi)g(ws), (38)

where we have omitted the normalization. We note that the
initial spectrum in Eq. (38) is completely symmetric, i.e.,
Y (wy, @) = Y(wy, wy), and gives PP =0atQ =0.

We now consider the same setup with the interferometer in
a constant rotational motion with frequency 2 # 0. The final
spectrum of the two-photon state changes to

Yi(wr, w2) = Yiwr, w2) cos(Bwyty)e P2, (39)

where the factor cos(Bw;ty) results from the interference of
the mode a; by “final state” we again mean the state that
arrives at the last beam splitter. Using Eq. (35) we then find
the coincidence probability,

b _ L cos(uty)e 5% 4 L (1 4 e727°%)
S 2 2[1 4 cos(uty)e s8]

(40)
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FIG. 4. Coincidence plot as a function of the angular fre-
quency 2 = 27 f. We have set the interferometer area A = 22.7 m?,
i =2.36 x 1015 Hz, corresponding to a typical photon carrier
wavelength of 800 nm. Two curves are shown for two differ-
ent bandwidths, 0 = 1.47 x 103 Hz (blue solid curve) and o =
1.18 x 10" Hz (dashed red curve), corresponding to 5- and 40-
nm bandwidths, respectively. The shaded region corresponding to
P® > 0.5 indicates the region where measurements imply photon
entanglement.

We have plotted P® as a function of the angular fre-
quency 2 in Fig. 4 with the interferometer area A = 22.7 m?
(assuming the photons travel through a 100-m-long fiber,
wound 35 times along a 0.9-m-diameter loop) and u =
2.36 x 10" Hz, corresponding to a typical photon carrier
wavelength of 800 nm. Two curves are shown for two dif-
ferent photon bandwidths, o = 1.47 x 103 Hz (blue solid
curve) and o = 1.18 x 10'* Hz (dashed red curve), corre-
sponding to 5 and 40 nm, respectively. The shaded region
corresponding to P® > 0.5 indicates the presence of en-
tanglement that manifests as photon anticoalescence. Short
bandwidths, i.e., long coherence photons, show a periodic
series of revivals of entanglement with increasing rotation fre-
quency. For larger photon bandwidths, i.e., shorter coherence
lengths, increasing the relative photon delay by increasing
the rotation speed leads to a reduction of the coincidence
peak values and of the overall fringe visibility. This is a
result of the loss of mutual coherence between the two
interfering photons.

The proposal shown in Fig. 3 can be also seen as a combi-
nation of the setups shown in Fig. 2, which can be exploited to
gain an intuitive understanding of the results. As in the case of
the quantum Sagnac and the HOM setup, also in this case the
wave packets traveling in the corotating and counter-rotating
directions acquire a relative time delay during time evolution
which is mathematically represented by a phase factor. Specif-
ically, the paths denoted by the purple and blue arrows in
Fig. 3 can be related to the quantum Sagnac and contribute an
interference factor e #®11r 4 TPl ~ cos(Bwtr). Together
these paths, i.e., the purple and blue arrows, form half of the
HOM setup, while the other half is depicted by the corotating
green path which in turn contributes a time delay e~"#»s, For
the whole setup we thus find a factor cos(Bw t)e~#“2'r which
is not symmetric under exchange of the frequencies, i.e.,

w1 < wy. In frequency space these time delays then change
the final biphoton spectrum from symmetric to antisymmetric
and vice versa, resulting in oscillations between bunching
and antibunching, respectively, as seen in Fig. 4. The paths
a and b in Fig. 3 forming the asymmetric HOM setup can
be also seen as reminiscent of an unbalanced Mach-Zehnder
setup [32].

The asymptotic value for the coincidence probability in
Fig. 4 can also be intuitively understood in terms of quantum
Sagnac and the HOM setups. At high rotation frequency
the counterpropagating mode (blue arrow) no longer inter-
feres with the corotating modes (purple and green arrows)
due to nonoverlapping frequency spectra. Loosely speaking,
the counterpropagating mode (blue arrow) can be associated
with half of the initial mode &, while the other half of the
mode a corotates (purple arrow) and interferes with the other
corotating mode b (green arrow). From Eq. (40) we find at
high rotation frequency the value P®’ ~ 1/4; this is halfway
between a full dip, P@ ~ 0, and the case without bunching
or antibunching, P® ~ 1/2. As the frequency spectrum of
the two corotating modes is identical (blue and green arrow),
i.e., no time delay exists between them, they bunch together
at the output ports of the beam splitter. Hence the counter-
rotating (corotating) part of the mode a is associated with
P® ~1/2 (P® ~ 0). The coincidence probability at high
rotation frequency can be thus seen as the average behavior,
ie, P® ~ (0+41/2)/2=1/4.

The experimental setups shown in Fig. 2 and the one shown
in Fig. 3 are substantially different, both experimentally and
conceptually. In particular, the HOM on a rotating platform
[17] is a symmetric setup, which is unable to induce the
antibunching behavior of photons, but produces only a coinci-
dence dip. Although photon bunching below P < 1 implies
quantum interference phenomena, one cannot assert anything
about entanglement. On the other hand, the setup in Fig. 3
is asymmetric, and as shown in Fig. 4 is able to invert a
coincidence dip, i.e., PP < %, to a spike, i.e., PO > % Its
importance lies in that photon antibunching P® > % implies
entanglement.

The antisymmetrization of the photon spectrum, which
leads to a modification of the coincidence probability, is a
direct consequence of the noninertial motion of the platform.
More generally, this shows that rotational motion can activate
dormant asymmetries in the experimental setup leading to an
antisymmetric spectrum. It is also interesting to consider an
initial antisymmetric spectrum ;; the proposed experiment
shows that 1; can become symmetrized during time evolution,
fully concealing the anticoalescence signature of entangle-
ment.

These effects can be traced to the impossibility of clock
synchronization along a closed loop on the rotating platform.
In particular, the Hamiltonian in Eq. (26) can be linked to
the effect of clock desynchronization [10]. It is important to
note that this is a genuine relativistic effect, which is not
expected to arise in a Newtonian theory, although it imprints
a non-negligible experimental trace in the regime typically
associated with the latter. This is different from the observer-
dependent entanglement effect in noninertial reference frames
[33], expected to arise as a consequence of the Unruh radiation
[34,35] which vanishes at low accelerations.
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VI. CONCLUSIONS

We have developed a formalism for describing quantum
experiments on rotating platforms, both matter-wave and
photon interferometry, exploiting the map between symme-
try generators and Hilbert space operators. The dynamics
assumes a simple form with the time evolution given by the
Born Hamiltonian. The developed theory can be represented
on a generic Hilbert space and is valid in regimes where
the particle number is conserved, as is the case of a typical
table-top laboratory experiment.

We have further developed the theory to analyze two re-
cent photon-interferometry experiments, namely, the quantum
Sagnac and the HOM experiment on a rotating platform. We
have also proposed a modified HOM interferometer where
entanglement can be revealed or concealed depending on the
rotational frequency. Specifically, we have shown that rota-
tions together with an asymmetry of the experimental setup
can strongly affect the bunching and antibunching behavior,
and hence the manifestation of entanglement.

The interferometer shown in Fig. 3 can generate both
bunching as well as antibunching solely through rotation, a
feature which distinguishes it from the previously considered
HOM interferometer on a rotating platform [17]. Furthermore,
the strength of the effect at low rotational speed is suggestive
that such phenomena are all but rare. Indeed, we note that

asymmetries in the setups of complex experiments as well
as rotations, both controlled and spurious, are ubiquitous. It
is thus likely that these effects will have ramifications for
quantum-sensing applications.

The proposed experiment can be also viewed as a test of the
underlying Poincaré symmetry group for entangled system.
The proposal is based on a theoretical model that relies heavily
on intrinsic features of both relativity and quantum mechanics.
Although we do not suspect deviations from the predicted
behavior, we nonetheless note that entanglement in noniner-
tial reference frames has not yet been fully experimentally
scrutinized. We conclude by recalling that classical tests of
spacetime symmetries such as the Michelson-Morley and the
Sagnac experiment were also initially devised with the goal
of reaffirming the established theories, but ended profoundly
affecting the elementary notions of space and time.

ACKNOWLEDGMENT

The authors acknowledge support from the EU H2020FET
project TEQ (Grant No. 766900), from the EPSRC (U.K.,
Grant No. EP/M009122/1), and from the European Union’s
Horizon 2020 research and innovation programme under
Grant Agreement No. 820392.

[1] H. Minkowski, Raum und zeit, Jahresber. Dtsch. Math. Ver. 18,
75 (1909).

[2] Minkowski Spacetime: A Hundred Years Later, edited by V.
Petkov, Vol. 6 (Springer, Berlin, 2010).

[3] W. A. Von Ignatowsky, Einige allgemeine Bemerkungen zum
Relativitdtsprinzip, Verh. Dtsch. Phys. Ges. Berlin 12, 788
(1910).

[4] S. Liberati, Tests of Lorentz invariance: A 2013 update,
Classical Quantum Gravity 30, 133001 (2013).

[5] H. P. Robertson, Postulate versus observation in the special
theory of relativity, Rev. Mod. Phys. 21, 378 (1949).

[6] A. A. Michelson and E. W. Morley, On the relative motion of
the earth and of the luminiferous ether, Sidereal Messenger 6,
306 (1887).

[7] C.-K. Hong, Z.-Y. Ou, and L. Mandel, Measurement of Subpi-
cosecond Time Intervals between Two Photons by Interference,
Phys. Rev. Lett. 59, 2044 (1987).

[8] L. Mandel, Quantum effects in one-photon and two-photon
interference, in More Things in Heaven and Earth (Springer,
Berlin, 1999), pp. 460-473.

[9] A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach,
E. M. Gauger, and D. Faccio, Attosecond-resolution
Hong-Ou-Mandel interferometry, Sci. Adv. 4, eaap9416
(2018).

[10] E. Gourgoulhon, Special Relativity in General Frames
(Springer, Berlin, 2016).

[11] G. Sagnac, L’éther lumineux démontré par I’effet du vent relatif
d’éther dans un interférometre en rotation uniforme, C. R. Acad.
Sci. 157, 708 (1913).

[12] G. Sagnac, Sur la preuve de la réalité de 1’éther lumineux par
I’expérience de I’interférographe tournant, C. R. Acad. Sci. 157,
1410 (1913).

[13] E. J. Post, Sagnac effect, Rev. Mod. Phys. 39, 475 (1967).

[14] M. Fink, A. Rodriguez-Aramendia, J. Handsteiner, A. Ziarkash,
F. Steinlechner, T. Scheidl, 1. Fuentes, J. Pienaar, T. C. Ralph,
and R. Ursin, Experimental test of photonic entanglement
in accelerated reference frames, Nat. Commun. 8, 15304
(2017).

[15] M. Fink, F. Steinlechner, J. Handsteiner, J. P. Dowling, T.
Scheidl, and R. Ursin, Entanglement-enhanced optical gyro-
scope, New J. Phys. 21, 053010 (2019).

[16] G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P.
Baldi, Single-photon Sagnac interferometer, J. Phys. B: At.,
Mol. Opt. Phys. 39, 1011 (2006).

[17] S. Restuccia, M. Toros, G. M. Gibson, H. Ulbricht, D. Faccio,
and M. J. Padgett, Photon Bunching in a Rotating Reference
Frame, Phys. Rev. Lett. 123, 110401 (2019).

[18] A. Tartaglia and M. L. Ruggiero, The Sagnac effect and pure
geometry, Am. J. Phys. 83, 427 (2015).

[19] P. Woit, Quantum Theory,
(Springer, Berlin, 2017).

[20] A. Cannas Da Silva and A. Cannas Da Salva, Lectures on
Symplectic Geometry, Vol. 3575 (Springer, Berlin, 2001).

[21] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-
Hole Mechanics (Cambridge University Press, Cambridge,
U.K., 2004).

[22] G. Rizzi and M. L. Ruggiero, Space geometry of rotating
platforms: An operational approach, Found. Phys. 32, 1525
(2002).

[23] M. J. Padgett, On diffraction within a dielectric medium as an
example of the Minkowski formulation of optical momentum,
Opt. Express 16, 20864 (2008).

[24] S. M. Barnett, Resolution of the Abraham-Minkowski
Dilemma, Phys. Rev. Lett. 104, 070401 (2010).

Groups and Representations

043837-7


https://doi.org/10.1088/0264-9381/30/13/133001
https://doi.org/10.1088/0264-9381/30/13/133001
https://doi.org/10.1088/0264-9381/30/13/133001
https://doi.org/10.1088/0264-9381/30/13/133001
https://doi.org/10.1103/RevModPhys.21.378
https://doi.org/10.1103/RevModPhys.21.378
https://doi.org/10.1103/RevModPhys.21.378
https://doi.org/10.1103/RevModPhys.21.378
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1126/sciadv.aap9416
https://doi.org/10.1126/sciadv.aap9416
https://doi.org/10.1126/sciadv.aap9416
https://doi.org/10.1126/sciadv.aap9416
https://doi.org/10.1103/RevModPhys.39.475
https://doi.org/10.1103/RevModPhys.39.475
https://doi.org/10.1103/RevModPhys.39.475
https://doi.org/10.1103/RevModPhys.39.475
https://doi.org/10.1038/ncomms15304
https://doi.org/10.1038/ncomms15304
https://doi.org/10.1038/ncomms15304
https://doi.org/10.1038/ncomms15304
https://doi.org/10.1088/1367-2630/ab1bb2
https://doi.org/10.1088/1367-2630/ab1bb2
https://doi.org/10.1088/1367-2630/ab1bb2
https://doi.org/10.1088/1367-2630/ab1bb2
https://doi.org/10.1088/0953-4075/39/5/001
https://doi.org/10.1088/0953-4075/39/5/001
https://doi.org/10.1088/0953-4075/39/5/001
https://doi.org/10.1088/0953-4075/39/5/001
https://doi.org/10.1103/PhysRevLett.123.110401
https://doi.org/10.1103/PhysRevLett.123.110401
https://doi.org/10.1103/PhysRevLett.123.110401
https://doi.org/10.1103/PhysRevLett.123.110401
https://doi.org/10.1119/1.4904319
https://doi.org/10.1119/1.4904319
https://doi.org/10.1119/1.4904319
https://doi.org/10.1119/1.4904319
https://doi.org/10.1023/A:1020427318877
https://doi.org/10.1023/A:1020427318877
https://doi.org/10.1023/A:1020427318877
https://doi.org/10.1023/A:1020427318877
https://doi.org/10.1364/OE.16.020864
https://doi.org/10.1364/OE.16.020864
https://doi.org/10.1364/OE.16.020864
https://doi.org/10.1364/OE.16.020864
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevLett.104.070401
https://doi.org/10.1103/PhysRevLett.104.070401

MARKO TOROS et al.

PHYSICAL REVIEW A 101, 043837 (2020)

[25] R. J. Glauber, The quantum theory of optical coherence, Phys.
Rev. 130, 2529 (1963).

[26] T. Legero, T. Wilk, A. Kuhn, and G. Rempe, Characterization
of single photons using two-photon interference, Adv. At., Mol.,
Opt. Phys. 53, 253 (2006).

[27] H. P. Specht, J. Bochmann, M. Miicke, B. Weber, E. Figueroa,
D. L. Moehring, and G. Rempe, Phase shaping of single-photon
wave packets, Nat. Photonics 3, 469 (2009).

[28] K. Wang, Quantum theory of two-photon wavepacket interfer-
ence in a beamsplitter, J. Phys. B: At., Mol. Opt. Phys. 39, R293
(2006).

[29] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
Continuum fields in quantum optics, Phys. Rev. A 42, 4102
(1990).

[30] A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri,
T. Jennewein, and A. Zeilinger, Anti-symmetrization re-

veals hidden entanglement, New J. Phys. 11, 103052
(2009).

[31] M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, 1. Gianani,
and F. Sciarrino, What Hong-Ou-Mandel interference says
on two-photon frequency entanglement, Sci. Rep. 7, 7247
(2017).

[32] D. V. Strekalov, T. B. Pittman, and Y. H. Shih, What we
can learn about single photons in a two-photon interference
experiment, Phys. Rev. A 57, 567 (1998).

[33] I. Fuentes-Schuller and R. B. Mann, Alice Falls into a Black
Hole: Entanglement in Noninertial Frames, Phys. Rev. Lett. 95,
120404 (2005).

[34] P. C. W. Davies, Scalar production in Schwarzschild and
Rindler metrics, J. Phys. A: Math. Gen. 8, 609 (1975).

[35] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D
14, 870 (1976).

043837-8


https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1016/S1049-250X(06)53009-5
https://doi.org/10.1016/S1049-250X(06)53009-5
https://doi.org/10.1016/S1049-250X(06)53009-5
https://doi.org/10.1016/S1049-250X(06)53009-5
https://doi.org/10.1038/nphoton.2009.115
https://doi.org/10.1038/nphoton.2009.115
https://doi.org/10.1038/nphoton.2009.115
https://doi.org/10.1038/nphoton.2009.115
https://doi.org/10.1088/0953-4075/39/18/R01
https://doi.org/10.1088/0953-4075/39/18/R01
https://doi.org/10.1088/0953-4075/39/18/R01
https://doi.org/10.1088/0953-4075/39/18/R01
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1088/1367-2630/11/10/103052
https://doi.org/10.1088/1367-2630/11/10/103052
https://doi.org/10.1088/1367-2630/11/10/103052
https://doi.org/10.1088/1367-2630/11/10/103052
https://doi.org/10.1038/s41598-017-07555-4
https://doi.org/10.1038/s41598-017-07555-4
https://doi.org/10.1038/s41598-017-07555-4
https://doi.org/10.1038/s41598-017-07555-4
https://doi.org/10.1103/PhysRevA.57.567
https://doi.org/10.1103/PhysRevA.57.567
https://doi.org/10.1103/PhysRevA.57.567
https://doi.org/10.1103/PhysRevA.57.567
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870

