
PHYSICAL REVIEW A 86, 013842 (2012)

Nonlinear propagation dynamics of finite-energy Airy beams
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The nonlinear dynamics of intense truncated Airy beams in Kerr ionizing media are investigated from numerical
simulations and experiments. We show numerically that a competition between the linear and nonlinear effects
takes place and may be modified by tuning the width of the main lobe of the Airy beam and the size of the
truncating diaphragm. Our analysis shows that the acceleration of the Airy peak, an inherent feature of linear
Airy beam propagation, is preserved only for powers in the main Airy lobe below a certain threshold. Nonlinear
propagation of intense Airy beams with low power in the main lobe is sustained by a continuous energy flux
from its neighbors, similarly to the mechanism sustaining nonlinear Bessel beam propagation. Airy beams with
higher powers in the main lobe are reshaped into a multifilamentary pattern induced by Kerr and multiphoton
nonlinearities. The nucleation of new filaments and their interaction affect the acceleration of the main Airy
lobes. We finally show that the size of the truncation constitutes a control parameter for the energy flux that
features the Airy beam acceleration. Experiments performed in water corroborate the existence of these two
distinct nonlinear propagation regimes.
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I. INTRODUCTION

Airy beams with finite energy were recently proposed
as genuine nonspreading optical waves [1,2]. Airy beams
are intrinsically one-dimensional structures [3], but several
combinations were demonstrated since 2007 for realizing a
two- or three-dimensional nonspreading optical wave packet
by linear superposition of subdimensional nonspreading struc-
tures [4–6]. In 2010, Chong et al. generated Bessel-Airy
beams consisting of a Bessel beam in the transverse plane
and an Airy distribution along the longitudinal dimension [7].
Abdollahpour et al. generated three-dimensional (3D) Airy
light bullets consisting of an Airy beam profile in each
dimension [8]. Nonlinear generation techniques were also
used; for example, by Ellenbogen et al. who generated Airy
beams at the second harmonic of a pump beam by using
nonlinear three-wave mixing in nonlinear crystals [9].

In the linear regime the propagation dynamics of Airy
beams has been studied extensively. The two most exotic
features of Airy beams (namely, self-healing and transverse
acceleration) have been investigated by Broky et al. [10] and
Siviloglou et al. [11]. The dependence of Airy wave packets on
wavelength, spatial coherence and dispersion have been inves-
tigated in Refs. [12,13]. One of the interests of these structures
is their potential for applications in extreme nonlinear optics.
Airy beams in the nonlinear regime were discussed in Refs.
[8,14–16] from the observation of spectacular manifestations
common with the nonlinear dynamics of light filaments, such
as supercontinuum generation and conical emission. Lotti et al.
recently discovered the existence of stationary nonlinear Airy
beams in one transverse dimension [17]. An open question
concerns the properties of multidimensional Airy beams in
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the nonlinear regime. High-intensity Airy beams propagating
in a gas or a transparent medium can be strongly affected
by nonlinear effects that play a key role in the dynamics
of ultrashort laser pulse propagation (i.e., the optical Kerr
effect, multiphoton absorption and ionization to cite only a
few [18–20]).

In this paper we investigate the propagation dynamics of
intense Airy beams with particular emphasis on the compe-
tition between the features of linear Airy beam propagation
(acceleration property, stationarity) and the trend of the most
intense lobes of an Airy beam to behave as filaments. We
identify nonlinear propagation regimes of intense Airy beams
in a Kerr medium by means of numerical simulations, with
special attention paid to beam transverse acceleration and
stationarity. We notably answer to the following questions:
Is the Airy beam profile affected by nonlinear propagation
or by finite size effects? Does the trajectory and transverse
acceleration of the most intense peak of an Airy beam depend
on its power content?

II. PROPAGATION MODEL

A. Linear Airy beam propagation

The propagation of the finite-energy Airy beam (FEAB)
introduced by Siviloglou and Christodoulides [1,2] is governed
by the paraxial equation

∂E

∂z
= i

2k
�⊥E, (1)

where �⊥ denotes the Laplacian in the transverse diffraction
plane and k denotes the propagation constant. Equation (1)
describes the evolution of the envelope of the electric field of
a quasimonochromatic beam (�λ/λ � 1) in a dispersionless
medium along the propagation axis z in the linear regime
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(i.e., due to diffraction effects). It is directly derived from
the Maxwell equations for a material without magnetization
and no free charges and currents, by applying the paraxial
approximation (wavelength much shorter than beam waist:
λ0 � w0) and the slowly varying envelope approximation
(wavelength much shorter than typical evolution distance for
the beam envelope: λ0 � z0, where z0 ≡ kw2

0/2 denotes the
diffraction length of a beam of waist w0) [18].

In one transverse dimension x, the propagation of the FEAB

E (z = 0,x) = E0Ai (x/w0) exp (ax/w0) , (2)

where Ai denotes the Airy function and w0 denotes the width
of the central lobe, is described by

E(z,x) = E0Ai(s − ζ 2 + i2aζ ) exp[a(s − 2ζ 2)]

× exp[iζ (−2ζ 2/3 + a2 + s)], (3)

where s = x/w0 and ζ = z/(4z0) are the normalized trans-
verse coordinate and propagation distance respectively. Trans-
verse acceleration of the peak intensity of Airy beams is one of
their peculiar properties. From Eq. (3), this acceleration obey
s − ζ 2 = s0; that is, in physical units,

x = x0 + z2

4k2w3
0

, (4)

where x0 denotes the initial position of the peak at z = 0.
Equation (4) shows that the Airy beam follows a parabolic tra-
jectory x = x0 + z2/(2rc) with curvature radius rc = 2k2w3

0.
The typical propagation distance for the peak of the Airy beam
to translate by w0 is 4z0. In addition, the peak intensity of the
Airy beam should vary as exp(−az2/4z2

0); that is, the length
over which the intensity of the FEAB is larger than half the
maximum value due to finite size effects is

zA = 4z0

√
ln (2) /a. (5)

By analogy with the Bessel zone for Bessel beams, we will call
this quantity the Airy zone. The FEAB given by Eq. (3) extends
to two transverse dimensions (x,y) by a superposition of two
one-dimensional (1D) FEABs: in this case, its acceleration
in the y-z plane is characterized by the same curvature y =
y0 + z2/(2rc), where y0 denotes the initial position of the peak
at z = 0.

B. Nonlinear Airy beam propagation

The propagation of a quasimonochromatic laser beam in
the nonlinear regime is described by a scalar equation of
nonlinear Schrödinger type, which is obtained by applying,
as in Eq. (1), the paraxial and slowly varying envelope
approximations while using the reference frame of the pulse
[z,t = tlab − z/υg(ω0)] where υg(ω0) ≡ ∂ω/∂k |ω0 denotes
the group velocity [19]:

∂E

∂z
= i

2k
�⊥E + i

ω0

c
n2|E|2E − βK

2
|E|2K−2E

− i
ω0

n0c

ρ

2ρc

E. (6)

The second term on the right-hand side of Eq. (6) accounts
for the optical Kerr effect with coefficient n2. The remaining
terms describe multiphoton absorption (MPA) with coefficient
βK (i.e., the energy losses necessary to ionize the medium) and

plasma defocusing by the electron plasma of density ρ gen-
erated by multiphoton ionization, with ρc = 1.7 × 1021 cm−3

being the critical density beyond which the plasma becomes
opaque at 800 nm.

Multiphoton ionization (MPI) is described by the evolution
equation for the electron density:

∂ρ

∂t
= σK |E (t) |2K (ρnt − ρ) , (7)

where the coefficients σK for multiphoton ionization and βK

for MPA are linked through the relation βK = Kh̄ω0ρntσK .
Multiphoton processes involve a number of photons K ≡
〈Ui/h̄ω0〉 + 1, where Ui denotes the ionization potential and
ρnt denotes the density of neutral molecules.

For simulations in air, we used the parameters n2 =
3.2 × 10−19 cm2/W associated with a critical power for
self-focusing of Pcr = 3 GW at the laser wavelength of 800 nm
[21,22]. The coefficients for MPI and MPA, σ8 = 4 × 10−96

s−1 cm16/W8 and β8 = 4 × 10−95 cm13/W7, were calculated
from the Keldysh formulation taken in the multiphoton limit
[23], revisited by Ilkov et al. [24], with detailed formulas
given in Ref. [18] using Ui = 12.06 eV, K = 8 photons, and
ρnt = 5 × 1018 cm−3 for oxygen molecules.

For simulations in water, we used the parameters n2 =
1.6 × 10−16 cm2/W, Pcr = 4 MW [25,26], K = 5 photons,
σK = 1 × 10−54 s−1 cm10/W5, βK = 8.3 × 10−50 cm7/W4

[26,27], ρnt = 6.6 × 1022 cm−3 [28], and n0 = 1.33.

C. Validity of model approximations

The goal of this work is to describe the spatial dynamics
of nonlinear Airy beams. In our experiments presented below,
we used femtosecond laser pulses with tp = 35 fs nominal
duration propagating in air or passing through various optical
elements to generate an Airy beam which results in 80 fs pulses
propagating further in water. We assumed that the laser pulse
profile remains undistorted along the propagation; that is, we
considered that effects associated with changes in the temporal
profile are sufficiently weak (or slow) with respect to the spatial
effects induced by self-focusing, plasma defocusing, and mul-
tiphoton absorption. This approximation requires justification
to guarantee the validity of our model (6) to describe the spatial
dynamics of propagating nonlinear pulses. This is the goal of
this section, where we evaluate the importance of temporal
effects by comparing their characteristic lengths.

Taking into account the material parameters, we eval-
uated the nonlinear lengths LKerr = c/(ω0n2I ), LMPA =
1/(2βKIK−1), and LPlasma = 2/(σω0ρτ ) [29] of the Airy
beams used in this work and compared them to the dispersive
length of our laser pulse. Since both lengths are a function of
the local intensity, they generally vary along z. For propagation
in air, the dispersive length of the pulse is LGVD = t2

p/(2k
′′
0) ∼

30.6 m, for a dispersive coefficient k
′′
0 = 0.2 fs2/cm, whereas

at their minimum value both nonlinear characteristic lengths
decrease down to about 1.6 cm (Kerr) and 0.4 cm (MPA). This
is three order of magnitude shorter that LGVD. Comparison of
these lengths justify that the effect of dispersion can be safely
neglected compared to nonlinear effects.

For the Airy beams propagating in water, the nonlinear
lengths are as short as LKerr ∼ 110 μm and LMPA ∼ 76 μm at
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FIG. 1. (Color online) Logscale plot of the characteristic lengths of physical effects vs propagation distance for (a) the Airy beam of
Fig. 3(c) propagating in air, (b) the Airy beam of Fig. 11 propagating in water, and (c) the Airy beam of figure Fig. 12 propagating in water.
The blue and magenta continuous lines that correspond to the characteristic lengths of dispersion and diffraction respectively. Green dotted
line is for MPA, red dashed line is for Kerr, and black dash-dotted line is for plasma defocusing.

their minimum, both much shorter than the dispersive length
LGVD = 2.47 cm, for a dispersive coefficient k

′′
0 = 248 fs2/cm

[30]. This means that, despite the high dispersion of water, we
can still neglect it since the nonlinear effects are much stronger
in the high-intensity regime.

Figure 1 shows the characteristic lengths for the three main
cases (one Airy beam propagating in air and two others in
water) in this work along propagation distance. In addition
Table I is showing the analytical formulas for all characteristic
lengths used for the calculations of the curves in Fig. 1,
and the values that give the minimum for each physical
effect.

Dispersion effectively broadens the pulse even in the linear
propagation regime, although neglected in Eq. (6), but for
our parameters it has a homogeneous effect on the whole
beam which does not seriously affect the much faster spatial
dynamics. The laser pulse profile can therefore be safely
assumed to remain undistorted along propagation. We used this
undistorted profile to calculate the generated plasma density
by means of Eq. (7), where ionization rate depends on the local

intensity. The electron density used in the plasma defocusing
term in Eq. (6) is evaluated at the central local time t = 0 after
calculation by Eq. (6).

Our model includes another approximation: we considered
multiphoton ionization of a single species in air (i.e., oxygen)
with the lowest ionization potential Ui = 12.06 eV. This is
usually an excellent approximation in the regime of ultrashort
laser pulse filamentation since a more complete model taking
into account ionization of both oxygen and nitrogen molecules
gives a negligible additional contribution to the electron
density due the much smaller ionization rate of nitrogen
compared to oxygen molecules [31].

The above evaluation of dispersive lengths justifies this
assumption and the use of Eq. (6) [19]. We emphasize that
assuming the spatial profile is mainly shaped by spatial
dynamics (diffraction, self-focusing, multiphoton absorption,
and plasma defocusing) and neglecting the effect of the much
weaker temporal dynamics on the beam shape will be further
justified by the good agreement between simulation and results
and measurements of nonlinear Airy beam profiles.

TABLE I. Minimum characteristic lengths of physical effects.

Concerning Fig. 3(c) Concerning Fig. 11 Concerning Fig. 12

Physical Position of Position of Position of
effect Length formula minimum L min[L] (cm) minimum L min[L] (cm) minimum L min[L] (cm)

Kerr LKerr = c

(ω0n2I ) I = Imax = 1.6 I = Imax = 1.4 × 10−2 I = Imax = 1.1 × 10−2

2.5 × 1013 W/cm2 4.2 × 1012 W/cm2 5.3 × 1012 W/cm2

MPA LMPA = 1
(2βKIK−1) I = Imax 0.4 I = Imax 1.9 × 10−2 I = Imax 7.6 × 10−3

Plasma LPlasma = 2
(σω0ρτ ) ρ = ρmax = 2.3 × 102 ρ = ρmax = 1.0 ρ = ρmax = 0.9

defocusing 1.9 × 1016 cm−3 3.2 × 1018 cm−3 3.9 × 1018 cm−3

Dispersion LGVD = t2
p

2k
′′
0

tp = 35 fs 3.1 × 103 tp = 35 fs 2.47 tp = 35 fs 2.47

Diffraction LDiff = k0R2
0

2 R0 = w0 = 35 R0 = w0 = 10 R0 = w0 = 0.47
300 μm 140 μm 30 μm 0.47
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D. Initial condition: Truncated Airy beam

Our simulations start from an already formed Airy beam
described by

E (z = 0,x,y) = E0Ai (x/w0) Ai (y/w0) T (x,y) , (8)

where T mimics the effect of a circular diaphragm which
truncates the Airy beam and transforms it into a FEAB:
T (x,y) = 1 if r ≡

√
x2 + y2 < rd and T (x,y) = 0 if r � rd .

This input condition constitutes a two-dimensional FEAB
similar to Eq. (2), as if it was generated in vacuum; for
example, by methods described in Refs. [2,4] and entered
in the nonlinear medium (air) from the focus. With air, this
can be achieved with the setup proposed by Diels et al. [32].
By placing the circular diaphragm at the focal point we
truncate the already formed wide Airy beam to the desired size
without influencing the shape of the inner lobes. The position
immediately after the circular diaphragm is the initial state for
the simulation. This is analogous to linearly focusing a beam on
the entrance face of a sample and investigating the subsequent
nonlinear dynamics [33]. The corresponding laser pulse is
assumed to be Gaussian with full width at half maximum of
35 fs and to remain undistorted (frozen time). We consider
Airy beams with initial peak intensity I0 = 7 × 1012 W/cm2

and different lobe widths w0 = 100 μm, w0 = 200 μm, and
w0 = 300 μm.

Widening the main lobe width while keeping the input
intensity I0 ≡ |E0|2 constant is effectively increasing the
power content of the main lobe, PA, which is evaluated as
the power in the quadrant of the (x,y) plane delimited by the
first zero of the Airy function:

P=
∫ +∞

u0w0

∫ +∞

u0w0

|E (x,y) |2dxdy = I0 (w0f )2 , (9)

where f = m−2
∫ +∞
u0

Ai2(u)du = 1.71, u0 = −2.34 denotes
the first zero position, and m ∼ 0.54 denotes the maximum of
the Airy function. The three chosen lobe widths correspond
to powers PA = 2 GW (0.65 Pcr ), PA = 8 GW (2.6 Pcr ), and
PA = 18 GW (5.8 Pcr ). The critical power for self-focusing
and the ratio P/Pcr , where P denotes the total beam power,
usually constitutes a reference for evaluating the potential
of a Gaussian beam for self-focusing at powers slightly
exceeding Pcr , or breaking up into multiple filaments at higher
powers. For Airy beams, the main lobe power PA is a much
better indicator than the total power in the Airy beam for
characterizing self-focusing of the main lobe since P strongly
depends on the truncation size whereas PA does not, except in
extreme situations that no longer correspond to an Airy beam.
Using PA also allows us to consider Pcr as an estimate for
the self-focusing threshold even if the main Airy lobe is not
Gaussian. For the three powers considered above, PA exceeds
Pcr for the Airy beams with w0 = 200 μm and 300 μm, which
are thus expected to self-focus and collapse upon themselves.
Higher powers are actually required in order to clearly observe
self-focusing. We compare nonlinear propagation of the three
intense Airy beams defined above, hereafter called Airy beams
with moderate powers, with that of high power Airy beams
having the same peak intensity and width but a tenfold increase
of the ratio PA/Pcr .

III. PROPAGATION OF INTENSE AIRY BEAMS
IN WEAKLY NONLINEAR REGIME

Figure 2 shows cross sections of intense Airy beams at
different propagation distances during their nonlinear propa-
gation. For the three cases displayed in columns w0 = 100,
200, and 300 μm, the radius of the circular diaphragm is rd =
4.5 mm. Propagation distances increase from top to bottom
from z = 0 up to z = 80 cm with 20 cm steps. The last row
of Fig. 2 shows the beam profiles that would be obtained for
a linear propagation over 80 cm of each input Airy beam with
the same w0. The intense peak of the Airy beam accelerates
transversely faster when the initial size of the central lobe
is small. At a propagation distance of 80 cm, the peak of
the Airy beam with w0 = 100 μm (first column in Fig. 2)
reached the position x = y ∼ 2.5 mm, whereas the peaks of
the Airy beams with w0 = 200 and w0 = 300 μm (second and
third column in Fig. 2) show a slower transverse acceleration
by a factor of 8 and 27, respectively. It is readily seen in the
third column in Fig. 2 that the Airy beam with the largest
lobe remains nearly in place but undergoes self-focusing. The
effect of self-focusing on the Airy lobes is also clear from
the comparison of the beam cross sections after nonlinear and
linear propagation over 80 cm, shown in the last two rows of
Fig. 2. For the same input intensity, the main lobe of the Airy
beam carrying the highest power (w0 = 300 μm, third column
of Fig. 2) shrinks faster than that of the less-powerful Airy
beams. Even the secondary lobes of the most powerful Airy
beam are significantly reshaped. This trend to self-focus due
to the Kerr effect competes with the acceleration of the Airy
beam inherited from the properties of linearly propagating Airy
beams. Both processes can be viewed as a transfer of power: the
acceleration corresponds to a transfer from the secondary lobes
to the main lobe and is responsible for the self-healing property
of Airy beams [34], whereas self-focusing concentrates the
power of a given lobe upon itself.

The left column of Fig. 3 shows a comparison of the peak
intensity and generated plasma density during the nonlinear
propagation of the three Airy beams with moderate powers.
In these cases, for each propagation distance, intensities and
electron densities reported in Fig. 3 correspond to different
positions x,y of the peak of the Airy beam because it is
turning. However, as shown in Fig. 2, the initial main lobe
remains the most intense all along the propagation distance
and the reported electron densities in Fig. 3 are generated
by that lobe. The right column of Fig. 3 shows isointensity
surfaces for the three cases, plotted in the (x,y,z) space
(central time slice t = 0). It can be readily seen that, in these
cases, in spite of high intensities and nonlinear effects, the
main and the secondary lobes follow the parabolic trajectory
which would characterize the linear propagation of the input
Airy beam.

Airy beams with w0 = 200 μm and 300 μm have PA/Pcr >

1. Thus if the most intense Airy lobe behaved like a
typical Gaussian beam, it would self-focus and collapse upon
itself under the nonlinear action of the optical Kerr effect.
Then collapse would be arrested by multiphoton absorption,
plasma generation, and plasma defocusing as in ultrashort
pulse filamentation. Since these phenomena are high-order
processes, they should lead to saturation and prevent intensity
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FIG. 2. (Color online) (x,y) intensity plots of nonlinear Airy beams with initial peak intensity 7 × 1012 W/cm2 and different central lobe
size. First column is for w0 = 100 μm, second column is for w0 = 200 μm, and third column is for w0 = 300 μm. The propagation distance
varies from z = 0 (first line) to z = 80 cm (fifth line) by steps of 20 cm. The diaphragm radius for all cases is rd = 4.5 mm. The last line shows
the beam profiles after linear propagation of the three Airy beams over z = 80 cm. Note the larger window used for plotting the cross section
in the bottom-left corner.
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FIG. 3. (Color online) Nonlinear propagation of intense Airy beams with initial central lobe width of 100 μm (first line), 200 μm (second
line), and 300 μm (third line). Left column is peak intensity (continuous curve, left axis), electron density (dashed curve, right axis). Right
column is for isosurfaces of the intensity distribution showing the trajectories of the main and secondary lobes of the Airy beam. The axes
crossing at the origin are a guide for the eye so as to evaluate the curvature radius of the main peak trajectory. Note the different box sizes.

to grow above a certain value which can be predicted by simple
estimations [35,36]. However, our simulations show a different
behavior that is more similar to that of Bessel filaments [33,37].
First, no obvious nonlinear focus of the main Airy lobe appears
even though we considered propagation distances much larger
than the collapse distance estimated from Marburger’s formula
for Gaussian beams with the same widths and powers as the
considered Airy beams (i.e., 7.7 and 8.4 cm for the beams with
200 μm, 2.6Pcr and 300 μm, 5.8Pcr , respectively). Second,
for the widest Airy beams with width of 200 μm [Fig. 3(b)]
and 300 μm [Fig. 3(c)], the peak intensity reaches values
up to 2 × 1013 W/cm2 and the electron density exceeds 1016

cm−3 but no plateau is obtained indicating the absence of
a saturation process of the same nature as in filamentation
[36]. The intensity profile plotted in Fig. 3(a) does exhibit a

plateau over several tens of centimeters but it corresponds to
the smallest Airy beam with width of 100 μm [Fig. 3(a)],
the power of which is below threshold. Its peak intensity is
lower than 1013 W/cm2 and also lower than for a standard
filament in air; the electron density of the generated plasma
does not exceed a few 1012 cm−3, indicating a weakly nonlinear
propagation of the Airy beam. The lack of a clear nonlinear
focus as well as the absence of intensity plateau in the nonlinear
regime suggest that the propagation dynamics of nonlinear
Airy beams are governed by the same principles that apply to
Bessel filaments.

The intensity profile is well explained by finite size effects:
If the Airy beam was infinitely wide, an energy flux from the
tail carrying infinite energy would push the main lobe along the
diagonal x = y and could sustain its intensity over extended

013842-6



NONLINEAR PROPAGATION DYNAMICS OF FINITE- . . . PHYSICAL REVIEW A 86, 013842 (2012)

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

(a)

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

(b)

x 
(m

m
)

x 
(m

m
)

0 10 20 30 40 50 60 70 80 90 100

−0.4

−0.2

0

0.2

(c)

z (cm)

x 
(m

m
)

FIG. 4. (Color online) Projection of main lobe trajectory and FWHM of Airy beam along the x direction. (a) Input Airy beam with
w0 = 100 μm. (b) Input Airy beam with w0 = 200 μm. (c) Input Airy beam with w0 = 300 μm.

distances exactly as in the case of Bessel beams [37]. With
finite energy, the profile of the peak intensity of a linearly
propagating Airy beam is known to be governed by finite-size
effects and should decrease as exp[−az2/(k2w4

0)] according
to Eq. (3) (i.e., faster for large Airy beam lobes). This is the
behavior we observe in the nonlinear regime [second stage
of propagation in Figs. 3(b) and 3(c)], in conjunction with an
initial self-focusing stage that prevails at the beginning of the
propagation.

At moderate powers, Airy beams are intense enough to
undergo Kerr self-focusing and induce multiphoton absorp-
tion; however, the trajectory of the main lobe obtained in the
linear regime is preserved in the three cases shown in Fig. 3.
The parabolic trajectory of the Airy beam with the smallest
lobe width [Fig. 3(a)] exhibits the smallest curvature radius.
Figure 4 shows the projection of the main lobe trajectory in
the (x,z) plane and its full width at half maximum (FWHM)
diameter. The peak clearly turns as a linear Airy beam would
do, following a parabolic trajectory that coincides with that
given by Eq. (4) (dashed curves in Fig. 4). For the wider
input Airy beams [Figs. 3(b), 3(c) and 4(b), 4(c)] the nonlinear
propagation starts by a Kerr-induced self-focusing stage with a
decrease of the FWHM diameter from z = 0 cm to z = 30 cm.
This indicates a competition between Kerr self-focusing and
the acceleration of the Airy beam. From this observation, we
identified two situations for which the transverse acceleration
of the Airy peak is modified by the nonlinear propagation:
(i) higher-power Airy beams and (ii) narrower Airy beam
truncation.

IV. PROPAGATION OF INTENSE AIRY BEAMS
IN STRONGLY NONLINEAR REGIME

The Airy peak acceleration is quenched when the power
of the main lobe is large enough so that self-focusing of the
most intense Airy lobe prevails over the peak acceleration.
Increasing the width of the main lobe at constant input intensity
does increase its power content; however, it simultaneously
increases the curvature radius of the Airy beam trajectory,
thus requiring a longer propagation distance to see the effect
of acceleration quenching. Increasing the input intensity
while keeping the width of the main lobe constant results
in intensities approaching 1013 W/cm2, which ionize air
sufficiently to produce a plasma responsible for a defocusing
effect. This leads to an immediate decrease rather than an
increase of the intensity in the early stage of propagation.
In order to demonstrate the effect of acceleration quenching
with a high-power Airy beam having narrow lobes so as to
keep propagation distances smaller than 1 m, we arbitrarily
increased the Kerr index coefficient by a factor of 10 and
used the same input Airy beams as in Sec. III. This keeps the
curvature radius of the trajectories of the linearly propagating
Airy beams unchanged but increases PA/Pcr by a factor of
10 and allows us to isolate the effect of self-focusing on
the beam shape from other nonlinearities, like multiphoton
absorption and plasma defocusing. This mimics to some
extent an experimental situation in which an Airy beam
is formed in vacuum and enters a gas chamber containing
pressurized air at 10 atm. Due to the rescaling properties
of Eq. (6), the results also represent the propagation of an
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FIG. 5. (Color online) Nonlinear propagation of intense Airy beams with initial central lobe width of 200 μm, I0 = 7 × 1012 W/cm2 in
a highly nonlinear Kerr medium with n2 = 3.2 × 10−18 cm2/W. First line is for peak intensity (continuous curve, left axis), electron density
(dashed curve, right axis). Second line is for isosurfaces of the intensity distribution.

input Airy beam with w0 = 93 μm, I0 = 1.4 × 1012 W/cm2

generated with an infrared (1500 nm), 130 fs pulse, in
water (gap Ui = 6.5 eV, same number of photons K = 8 in
multiphoton processes at 1500 nm, n2 = 2 × 10−16 cm2/W,
ρnt = 6.7 × 1022 cm−3, βK = 2 × 10−89 cm13/W7, and σK =
3 × 10−94 s−1cm16/W8). There are many other combinations
of beam or pulse parameters ensuring that, for water, the ratios
LKerr/LDiff, LMPA/LDiff, and LPlasma/LDiff are equal to their
counterparts in air at 10 atm.

Figure 5 shows the results of this numerical experiment:
The peak intensity displayed on the first line exhibits several
cusps which indicate the distances where the intensity of
the most intense lobe is decreasing below the intensity of
a secondary lobe, which in turn becomes the most intense.
Correspondingly, each dashed curve indicates the electron
density generated by the most intense peak as a function of
propagation distance. Except at the beginning, this electron
density is obtained for a different lobe of the Airy beam, which
was initially not the most intense. This competition between
the different-intensity lobes is illustrated on the isointensity
plot shown on the second column of Fig. 5. A general trend of
the intensity peaks to follow curved trajectories is observed;
however, the initial main lobe clearly undergoes self-focusing
over a much shorter distance and disappears after 15 cm.
Then the most intense peak is located in a secondary lobe
which, after some propagation distance, also disappears. This
dynamical process repeats itself until the power in the whole
beam is exhausted. The trajectory of the most intense lobe is
therefore discontinuous each time a different secondary lobe
becomes dominant. The competition between the main and
secondary lobes can be followed on the I (x,y) cross sections
of the Airy beam as it propagates along z (second column
of Fig. 6). The main lobe width w0 and its power content
PA are therefore important parameters for characterizing
nonlinear Airy beam propagation: We observe from numerical
simulations a transition between a regime where the turning
ability of the Airy beam is preserved to a regime where
nonlinear effects seemingly modify the curvature radius of
the Airy peak trajectory due to self-focusing of intense lobes
and lobe competition for the available power. This trend is
clearly illustrated by the comparison of the second column of
Fig. 6 with the first that shows the I (x,y) cross sections of
the same Airy beam propagating in air with nonlinear index
coefficient n2 at 1 atm (also shown in the second column of

Fig. 2). At high powers, the Airy beam eventually undergoes
a reshaping into a multifilamentation pattern with multiple
filaments located at the positions of the main secondary lobes
of the input Airy beam.

V. PROPAGATION OF TRUNCATED AIRY BEAMS

We identified a second situation of transverse acceleration
quenching, that proceeds from the idea of managing the com-
petition between energy fluxes induced by Kerr self-focusing
and by peak acceleration. We kept our initial Airy beam
parameters w0 = 200 μm, I0 = 7 × 1012 W/cm2 and changed
the radius of the circular diaphragm. The input Airy beams
we considered so far in our simulations were truncated by a
circular diaphragm with a rather large radius (rd = 4.5 mm)
compared to the main lobe width. This approach makes finite
the energy of the input Airy beam while preserving a large
number of secondary lobes. Our simulations show that the
diaphragm radius has an important effect on the nonlinear
propagation of the Airy beam and on its transverse acceleration
since the number of secondary lobes controls the energy
flux that refills and pushes the main lobe. To facilitate the
comparison with previous results, all simulations concerning
this topic where conducted for the nonlinear index coefficient
n2 characterizing propagation in air at 10 atm or in water owing
to the above-mentioned rescaling.

Figure 7 shows a comparison of the propagation of three
Airy beams which have identical main lobe width (200 μm) but
which are truncated differently: the diaphragm radius is rd =
4.5 mm in the first column, rd = 2.5 mm in the second column,
and rd = 1 mm in the third column of Fig. 7. By using Eq. (5),
we obtain Airy zones of 351, 261, and 165 cm which are
much larger than the typical distance for self-focusing of the
200-μm-wide lobe containing 26 Pcr . The input peak intensity
and beam width are the same for all columns of Fig. 7, hence
the main lobes of the input Airy beams carry the same power.

In the case of the large apodizer, the linear energy flux of
the Airy beam is sustained over a larger propagation distance.
The beam truncated by the small diaphragm containing only
3 lobes of the input Airy beam propagates under the action
of nonlinear effects over a much shorter distance. The linear
energy flux responsible for the curved trajectory is in this case
not strong enough to bring energy from the tail to the peak of
the Airy beam over the whole Airy zone. The small diaphragm
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FIG. 6. (Color online) (x,y) intensity plots of
nonlinear Airy beams with initial peak intensity 7 ×
1012 W/cm2, with w0 = 200 μm, and a diaphragm
of rd = 4.5 mm. First column is n2 = 3.2 × 10−19

cm2/W (moderate power regime). Second column is
for n2 = 3.2 × 10−18 cm2/W (high-power regime).
The propagation distance varies from z = 0 (first
line) to z = 80 cm (fifth line) by steps of 20 cm.
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FIG. 7. (Color online) Effect of truncation in high-power regime. The three columns correspond to the propagation of of nonlinear Airy
beams with initial peak intensity 7 × 1012 W/cm2, central lobe size w0 = 200 μm, diaphragmed by circular apertures of radius rd = 4.5 mm
(first column), rd = 2.5 mm (second column), and rd = 1 mm (third column), with nonlinear-index coefficient n2 = 3.2 × 10−18 cm2/W. The
propagation distance varies from z = 0 (first line) to z = 80 cm (fifth line) by steps of 20 cm.
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quenches the power refilling of the secondary lobes and
therefore simultaneously tends to quench the turning ability
of the Airy beam. Secondary lobes still undergo self-focusing
and form filaments, but they subsequently follow a standard
filament interaction process featured by energy exchange with
the neighborhood. Their intensity increases until multiphoton
absorption becomes efficient and plasma is generated that
eventually participates in beam spreading and nucleation
of other filaments from the reservoir. Figure 7 shows that,
although these multiple filaments are initiated at the same
locations regardless of the diaphragm size, the smaller the
diaphragm radius the earlier in their propagation they depart
from each other. In this case the nonlinear dynamics dominate
and seemingly prevent the main lobe to turn. In fact, these
nonlinear dynamics require a much shorter distance than the
Airy zone, thus the associated energy flux is used to fill the
secondary lobes of the Airy beam rather than to induce a
curvature of the trajectory of the main lobe. So effectively, the
diaphragm radius allows us to switch off the energy flux at a
given distance.

Nonlinear Airy beam propagation falls into two separate
regimes identified on Figs. 6 and 7, depending on whether
the linear acceleration and beam profile is preserved. In the
strongly nonlinear regime (i.e., for a large relative strength

of the self-focusing nonlinearity), the input Airy beam is
effectively destroyed during its propagation. This is clearly
demonstrated in Fig. 7 at z = 40 cm (3rd row) for all
three apodizers. In the weakly nonlinear regime, the linear
dynamics prevails and the parabolic trajectory of the Airy
peak is unperturbed. The strongly nonlinear regime, however,
may show manifestations of linear dynamics such as the
self-healing property reported in Ref. [10], where part of
a linearly propagating Airy beam profile was obscured and
observed to be reconstructed after a few cm. The first column
of Fig. 7 shows this effect (i.e., the destroyed profile at z = 40
cm is partially reconstructed at z = 60 cm). At this point
multiphoton absorption becomes strong enough to gradually
destroy once again the beam profile, as we can see at z = 80
cm. The outcome of this competition is actually controlled by
the size of the apodizer. As the apodizer size is reduced to
rd = 2.5 mm, the reconstruction ability of the Airy beam is
weakened, as can be seen in the second column of Fig. 7. In the
third case (third column), where rd = 1 mm, the Kerr effect
completely dominates over all linear dynamics and the Airy
profile is entirely ruined after the short Airy zone. Note that,
in all three cases, the strength of the Kerr effect is unchanged
and only the apodizer radius (related to the Airy zone length
and the self-healing strength) is modified.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

FIG. 8. (Color online) First line shows evolution of energy flux during nonlinear propagation of Airy beams with w0 = 200 μm and
moderate power. The arrows indicate the direction of the energy flux while its strength is proportional to arrow lengths. The propagation
distances are z = 30 and z = 40 cm. Second and third lines are same as for the first line but for the high-power regime. The propagation
distances are z = 2, 16, 36, 46, 50, and 56 cm from left to right and from the second to third line.
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FIG. 9. (Color online) Experimental layout.

VI. ENERGY FLUX ALONG PROPAGATION

Finally, in order to make the dynamics of Airy beam
propagation in air more accessible to the reader, we have
included movies of the evolution, as a function of the
propagation distance z, of the cross section of the intensity
I (x,y) superimposed to an arrow plot showing the associated
local energy density flux (supplementary material associated
with this paper). The transverse components of the energy
density flux are simply proportional to the beam intensity and
to the phase gradient in the corresponding direction [37–40].
The first movie is associated with the regime of moderate
powers [i.e., the propagation of the 200 μm lobe width
shown in Fig. 6(a)], while the second is associated with the
high-power regime; that is, the propagation of the same input
Airy beam in the medium with larger Kerr coefficient used for
Fig. 6(b). Figure 8 shows the main features of the energy flux
as identified from the movies.

We can observe in the weakly nonlinear regime that the
main lobe of the Airy beam is turning because of the energy
flux along the symmetry axis x = y, from the quadrant (x < 0,
y < 0) toward the peak, as in the case of linear propagation
[Figs. 8(a) and 8(b) and first movie [41]].

In the strongly nonlinear regime, we observe that the main
Airy lobe undergoes standard filamentation and part of the
energy flux from the tail of the Airy beam is feeding the
secondary lobes which in turn undergo self-focusing and
nonlinear losses. Upon further propagation the main lobe peak
decays while one or several of the secondary peaks becomes
dominant, until they too decay [Figs. 8(c)–8(g) and second
movie [41]]. Visualization of the energy flux allows us to
understand the presence of notches in the curve shown in
Fig. 5(a), which correspond to propagation distances when a
secondary lobe with growing intensity takes over the decaying
intensity of the main lobe. Similarly to the scenario for spatial
replenishment in filaments [42], a notch in the intensity curve
in Fig. 5 is explained as that propagation distance where the
increasing secondary peak takes over as the global maximum
from the decreasing main lobe peak. This process can repeat
itself if the power in the secondary lobe is sufficient to be
further transferred to a third-order lobe.

VII. EXPERIMENTAL RESULTS

We performed experiments to observe the moderate- and
high-power regimes in Airy beam propagation as well as the
effect of Airy beam truncation. As shown in Fig. 9, the laser
beam is reshaped into an exponentially apodized 2D Airy beam
by using a recently developed technique [4] which exploits
coma aberration as a means to imprint a 2D spatial cubic phase
onto the initial Gaussian beam followed by spatial Fourier
transformation via a spherical lens. The Airy beam is generated
at the focus of the Fourier lens, located 2 cm inside a variable-
length transparent water tank, where an iris is used to truncate
the Airy profile to the desired size. Experiments are performed
in water to profit from the higher nonlinearity of the medium.

FIG. 10. (Color online) Normalized experimentally measured intensity at z = 10 cm after the focus, inside the water tank, for different
input pulse energies. (a) 9.5 nJ (0.03Pcr ), (b) 65 nJ (0.19Pcr ), (c) 597 nJ (1.75Pcr ), (d) 2.9 μJ (8.5Pcr ), (e) 5.4 μJ (16Pcr ), (f) 7.5 μJ (22Pcr ),
(g) 15 μJ (44Pcr ), (h) 32 μJ (94Pcr ). w0 ∼ 140 μm (FWHM 230 μm).
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FIG. 11. (Color online) Comparison of non-
linear dynamics between experiments and simula-
tions. Left shows normalized experimentally mea-
sured intensity at z = 10 cm after the focus inside
the water tank, for the highest power (94Pcr ) and
w0 = 140 μm. Right shows simulated intensity
distribution with identical input conditions after
propagation of 10 cm in water.

Figure 10 shows the experimentally generated Airy beam
with main lobe FWHM of 230 μm, which corresponds to
w0 
 140 μm (Fourier lens f = 50 cm), after propagation
over 10 cm in water, for 8 different input energies. The 800 nm
laser pulse duration where the Airy beams are generated is 80 fs
(as the initial pulse of 35 fs goes through a number of dispersive
optical elements). The power contained in the Airy profile,
at the point of creation inside the water tank, is increased
from 0.03Pcr (9.5 nJ ), which is essentially linear, up to 94Pcr

(32 μJ). These values refer to the power contained in the
whole Airy beam profile and not only in the main lobe, since
the latter is difficult to accurately measure experimentally.

However, from previous studies [4,8] the power content of the
main lobe can be estimated around 7% of the whole beam,
and thus the cases for the highest energy are well inside the
high-power regime. As the energy of the pulse is increasing,
nonlinear dynamics start to act on the beam shape in the same
way as predicted by simulations. Self-focusing of the main
Airy lobe clearly occurred for 22Pcr (total beam). As the beam
energy is increased further, secondary lobes start to self-focus
and increase in intensity, showing exactly the same trend as
predicted by numerical simulations.

In Fig. 11, a close-up of the measured Airy beam profile
at 94Pcr is shown side by side with the simulated intensity

FIG. 12. (Color online) Truncation effect for
two different apodizers. First line shows normal-
ized experimental input beams. The apodizers
used are rd = 750 μm (left) and rd = 450 μm
(right), the main lobe FWHM is w0 = 30 μm.
Input powers are 35Pcr (left) and 20Pcr (right).
Second line is normalized experimental intensity
profiles after z = 4.6 cm of propagation inside
the water tank, for the same pulses as in line
one. Last line is simulated intensity profiles at
the same position as in line two for identical input
conditions.

013842-13



P. PANAGIOTOPOULOS et al. PHYSICAL REVIEW A 86, 013842 (2012)

profile of the truncated ideal Airy beam. The input parameters
of the simulated Airy beam are matching the ones of the
experiment. Since the code operates in frozen time we take
an average pulse duration of 160 fs inside the water tank (due
to the dispersion of water). In the simulation, the Airy beam
propagates in 10 cm of water with n2 = 1.6 × 10−16 cm2/W,
which corresponds to Pcr 
 4 MW at the laser wavelength
of 800 nm [25]. The ionization coefficients used for water
are σK = 1 × 10−54 s−1 cm10/W5 for K = 5 photons, and
neutral atom density ρnt = 6.6 × 1022 cm−3 [28]. As we can
see in Fig. 11, the measured and the calculated patterns
agree very well. In both cases the main lobe is starting to
generate a filament-like structure with an extended reservoir
around it. The nearby secondary lobes are strongly perturbed,
while the subsequent ones are self-focusing and gaining
intensity. Beyond the 6th lobe, the beam shape remains
unchanged.

We also studied the effect, previously shown in simulations,
of Airy beam truncation on nonlinear propagation. Figure 12
shows a comparison between measurements and simulations
of two input Airy beams truncated by two different-radius
irises. The first line shows the two initial Airy beams used in
the experiment. The main lobe size is w0 = 30 μm (Fourier
lens f = 10 cm) and the apodizer radius is 750 μm (left) and
450 μm (right). The power contained in the two Airy beams is
35Pcr and 20Pcr for the large and small apodizer, respectively.
After nonlinear propagation over 4.6 cm in water the beams
are reshaped as can be seen in the second line of the same
figure. In the case of the large iris, some features of the Airy
profile are preserved while the most intense first and nearby
secondary lobes show manifestations of filamentation. In the
case of the small iris, the Airy profile is almost completely
destroyed by the nonlinear dynamics, and a multifilamentary
pattern is formed in its place. These experimental observations
are in very good agreement with corresponding simulation
results shown in the third line of Fig. 12.

VIII. CONCLUSION

We have investigated numerically and experimentally the
nonlinear dynamics of intense finite energy Airy beams.
Nonlinear propagation of Airy beams is found to be governed
by the same principles that rules propagation of nonlinear
Bessel beams: two regimes are distinguished by the power
content of the most intense Airy lobe. At moderate powers,
Airy beams propagate smoothly without exhibiting an abrupt
increase of intensity that would define a nonlinear focus, even
if the power carried by the main lobe is several times above
the critical power for self-focusing. The peak intensity does
not reach a plateau but slowly increases and eventually drops
due to finite size, truncation or apodization effects. The Airy
peak is transversely accelerated as in the linear regime. In
the high-power regime, the nonlinear dynamics is no longer
smooth. The competition between the Kerr effect and the
transverse energy flux regulated by the cubic spatial phase
of the beam leads to an unsteady propagation featured by
the formation and interaction of multiple filaments. If the
Kerr effect dominates, multiple lobes will indeed self-focus
on themselves and form filaments. This procedure leads to a
destruction of the Airy beam profile and as a result the turning
ability is lost. Alternatively, when the linear transverse flux
dominates, the beam tends to accelerate along the diagonal,
even though individual lobe shrinking (due to self-focusing)
is still observed. This competition can be observed over an
Airy zone, the length of which is determined by apodization
or truncation effects. These results apply to transparent media
in general: gases liquids or solids and might be useful for
engineering optical materials with Airy beams [43].
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