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Sorting spatial optical modes is a key challenge that underpins many applications from superresolved imaging
to high-dimensional quantum key distribution. However, to date, implementations of optical mode sorters only
operate on specific sets of modes, such as those carrying orbital angular momentum, and therefore lack versatility
with respect to operation with an arbitrary spatial basis. Here we demonstrate an arbitrary spatial mode sorter
by harnessing the random mode mixing process occurring during light propagation in a multimode fiber by
wave-front shaping. By measuring the transmission matrix of the fiber, we show sorting of up to 25 transverse
spatial modes of the Fourier, Laguerre-Gaussian, and random basis to an arbitrary set of positions at the output.
Our approach provides a spatial mode sorter that is compact, easy to fabricate, programable, and usable with any
spatial basis, which is promising for quantum and classical information science.
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A spatial mode sorter transforms a given spatial mode to
a specific position in a transverse plane. Such a device is
typically used to decompose a complex input optical signal
into a specific spatial basis. One of the simplest examples is a
convergent lens, which uniquely distributes the Fourier com-
ponents of incoming light across different positions in the lens
focal plane. In recent years, the development of mode sorting
devices has attracted much attention because of the potential
that transverse spatial modes (and knowledge of how these
compose a given signal) hold for implementing fundamental
optical tasks [1]. In classical optics, decomposing an image
in the Hermite-Gaussian (HG) basis enables, for example,
improvement of image spatial resolution [2,3] and the use
of a Laguerre-Gaussian (LG) basis for spatial multiplexing
allows an increase of the capacity of optical communication
systems [4—6]. In quantum optics, transverse spatial modes are
used for producing high-dimensional quantum states [7,8] that
hold potential for quantum computing and simulation [9,10],
communication [11,12], and fundamental studies [13].

However, while some technologies for manipulating spatial
modes of light are commercially available and widely used
[14], spatial mode sorting techniques are still at their early
development stage. Among them, phase flattening is a well
established scheme that was originally introduced to sort LG
modes of different orbital angular momentum [7,15]. This
approach has the advantage of being simple to implement
because it only requires a spatial light modulator (SLM) and a
single-mode fiber, but it also has drawbacks [16], including
that it requires one to perform d-projective measurements
over time (d is the number of sorted modes) and is restricted
to specific families of modes. This technique was recently
extended to LG modes with different radial index [17,18] and
HG modes [19], but still measuring projections over time.
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More recently, full-field mode sorting systems (i.e., no pro-
jective measurements) were developed for decomposing light
into LG modes. Examples range from systems using fixed
diffractive optical elements [20-22] to those based on multiple
phase screens programed with SLMs [23-26]. Nevertheless,
these systems are currently restricted to LG modes and are
challenging to implement because they require light to be
reflected by a large number of phase screens for efficient
sorting. This number scales as 6d 4 1 in the case of sorting
d modes between arbitrary spatial bases [27]. Finally, we
also note that complex scattering has been exploited for mode
sorting by Fickler et al. [28], but with impracticalities related
to a time-consuming optimization-based wave-front-shaping
approach [29] to manipulate light transmitted through a very
lossy layer of TiO5.

Here we implement a simple full-field mode sorting system
that can operate on any basis. For this, we leverage the com-
plex spatial mode mixing process performed by a multimode
fiber (MMF) by using a transmission matrix (TM) -based
wave-front-shaping technique. The optical TM was first mea-
sured by Popoff et al. [30] for manipulating monochromatic
light through a layer of paint and was then extended to
other complex systems such as MMFs [31,32] and is also
applicable to various light sources including optical pulses
[33,34] and photon pairs [35]. Recently, the TM was also
used to design complex linear optical networks for classical
[36] and quantum [37] simulations. In our work we extend the
range of applications to spatial mode sorting. Using the TM
of an MMF, we report experimental and simulated results of
sorting up to 25 modes and analyze the performance of our
approach with examples taken from the Fourier basis, the LG
basis, and a random basis.

Figure 1(a) describes an experimental setup composed of
an SLM that injects structured light into a MMF and a camera
that measures the output speckle images in both polarizations.
The TM of the MMF (T) is measured by illuminating the
SLM at normal incidence with a collimated Gaussian beam
(input mode k() and using a copropagating reference, as
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FIG. 1. (a) Phase-only spatial light modulator shapes and injects
monochromatic polarized light (810 nm) into a 5-cm-long 50-um-
diam-core graded-index multimode fiber using a lens f; = 20 mm.
The output surface of the fiber is imaged on the camera by two
lenses f, =20 mm and f5 =200 mm. A calcite plate is used as
a Wollaston prism to produce two vertical (V) and horizontal (H)
polarized images next to each other. The mode sorter consists of the
SLM and the MMF. Input modes are the transverse spatial modes
of light illuminating the SLM and output positions are the camera
pixels. (b) Phase mask programed on the SLM to focus light at
normal incidence k. (c) Phase ramp corresponding to an input mode
k, # k¢ is superimposed onto the focusing SLM mask. Intensity
images are acquired under (d) ko and (e) k; illuminations. (f) Am-
plitude and phase of a 25 x 25 subset of the measured transmission
matrix.
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detailed in [30]. The copropagating reference is a speckle
pattern produced by part of the light propagating through the
MMF but not modulated by the SLM. Here T is a complex
matrix that links optical fields between N = 32 x 32 SLM
macropixels and M = 80 x 40 camera pixels [Fig. 1(f)]. A
Wollaston prism is positioned after the fiber to image both ver-
tical and horizontal polarized speckle patterns on the camera
and therefore double the number of spatial modes measured
at the output. (See also Appendix A for more details about
the TM measurement.) One of the most basic tasks that the
TM can achieve is to focus light through the MMF. Using
the complex conjugate operator T, an SLM phase mask
is calculated and programed [Fig. 1(b)] to focus scattered
light at a targeted camera pixel [30], as shown in the output
intensity image in Fig. 2(d). Interestingly, focusing light using
the TM can be seen as a very simple one-dimensional mode
sorting operation: Light from an input mode K is directed
to a specific position in the camera plane. If a mode with a
different wave vector K; # Ky is inserted at the input, which
is done experimentally by superimposing a phase ramp on the
focusing phase mask on the SLM [Fig. 1(c)], the focusing ef-
fect at the output is lost and the mode is not sorted [Fig. 1(e)].

We build our TM-based mode sorting approach based
on this method to focus light through the MMF. First, we
arbitrarily choose spatial modes within a given spatial mode
basis. In the example detailed in Fig. 2, we selected two
modes from the Fourier basis characterized by wave vectors
k; and k; (£Kkp). This basis is represented by a change-of-
basis matrix P in which each column is a complex vector
listing all components of the corresponding mode written in
the SLM plane position basis (see Appendix B). Second, we
select two positions r; and r, within the illuminated area on
the camera and define a target mode sorting operator M. Here
M is a real matrix linking input modes (column) to output
positions (rows). In order to implement the sorting operation
k; — r; and ky — r, M is written as a matrix composed
of 0’s with only two 1’s located at the crossing between the
column associated with k; and the line associated with ry,
and the column k, and line r;. Finally, the phase mask that
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FIG. 2. (a) Spatial phase components of two input modes k; and k, of the Fourier basis. (b) Phase mask programed on the SLM to
implement a two-dimensional mode sorter k; — r; and k, — r, in the MMEF. Also shown are intensity images measured for (c) input mode
ki, (d) input mode k;, and (e) a linear combination of them 1/2(k; + k). Light is focused in two different camera positions denoted by r; and
r,. (f) Crosstalk matrix of the programed mode sorter showing a sorting ability of 97.5(1)%.
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we program on the SLM for implementing the mode sorting
operation [Fig. 2(b)] is calculated using the formula [36]

& = arg[diag(TTMP")], (1)

where ® is a vector associated with the phase mask, diag
refers to the diagonal of the matrix, and arg is the complex
argument.

The physics underlying Eq. (1) can be understood when
considering the propagation of the input field through the
MMEF. Let us first consider an ideal situation in which the
SLM is replaced by an optical system that can perform the
linear operation TTMPT, where M and P represent arbitrary
target and change-of-basis matrices, respectively. The output
field E°* obtained after propagation of an incoming field E™
through the MMF is then written

E = T[T'MPIE™ ~ MPTE™. 2)

For mode sorting, M can be written as an identity matrix and
Eq. (2) then describes a change-of-basis operation between an
arbitrary spatial basis and output spatial positions, namely, an
arbitrary mode sorting process. Note that the approximation
used in Eq. (2) directly relies on the complex spatial mode
mixing process performed by the MMF. Indeed, as shown
experimentally in Fig. 1(f), a subset of the TM measured
in the SLM and camera pixel basis can be approximated
by a random complex matrix [30,32]. In this case, one may
write TT =1 + H / \/ﬁ , where N is the number of columns
of T and H is a random matrix of complex coefficients
with unity variance (see Appendix A). Equation (2) is then
only valid for N > 1, which is the case in our experiment
(N = 1024). However, in a realistic situation, an SLM can
only shape the phase of the field in a specific optical plane,
which means that it only controls the phase components of the
diagonal coefficients of TTMPT. Such practical limitations
effectively reduce the number of degrees of control from
2N? (phase and amplitude N x N matrix coefficients) to
N (phase components of an optical plane), which has the
consequence of decreasing the overall efficiency of the mode
sorter compared to the ideal case.

To test our mode sorter, we measured intensities at the
output for input modes k; and k. In the experiment, input
modes are generated by superimposing their corresponding
phase masks on top of the mode sorting phase mask on
the SLM. This approach is perfect for using a second SLM
positioned in a conjugated plane ahead of the system, but only
limits the sorting tests to input modes that can be produced by
phase-only modulation. Figures 2(c) and 2(d) show that light
focuses at the two targeted positions r; and r, when either
of the modes k; and k; is inserted at the input, respectively.
Moreover, Fig. 2(e) shows that light focuses on both positions
simultaneously when a linear combination of modes 1/2(k; +
k;) is programed at the input. The mode sorting operation is
characterized by a crosstalk matrix, shown in Fig. 2(f). An
average sorting ability p of 97.5(1)% is calculated from the
crosstalk matrix coefficients I, (nth line and kth column)

using the formula p = ZZ:I Z"I’ml [28] (see Appendix C).
k=1tkn
Figure 3 shows the results of spatial mode sorting involving

up to 25 modes from different spatial basis sets. Using the
same TM from the previous experiment, we calculated new
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FIG. 3. Experimental results of mode sorting in the Fourier basis
k; (i € [1;25]) with (a) d =5, (b) d = 10, and (c) d = 25 modes.
The average sorting abilities are 93(3)%, 70(9)%, and 25(10)%,
respectively. Inset images show the corresponding phase masks
programed on the SLM. Also shown are the experimental results
of sorting Laguerre-Gaussian modes with radial number p = 0 and
azimuthal number ¢ € [—12;12] using (d) d =5, (e) d = 10, and
(f) d = 25 modes. The average sorting abilities are 82(3)%, 56(7)%,
and 15(6)%, respectively. Insets show the SLM phase masks pro-
gramed in each case. The results of mode sorting in a random basis
R; (i € [1;25]]) obtained by simulating light propagating through the
MMF with an experimentally measured TM are shown for (g) d = 5,
(h) d = 10, and (i) d = 25 modes. The average sorting abilities are
97(3)%, 83(6)%, and 45(17)%, respectively.

phase masks with Eq. (1) for three cases of sorting of d = 5,
10, and 25 spatial modes from the Fourier basis. Experi-
mentally measured crosstalk matrices are shown in Figs. 3(a)
and 3(b) and return values of average sorting ability ranging
from 93(3)% (d = 5) to 25(10)% (d = 25). Moreover, it is
essential to note that our approach can be used with any spatial
mode basis. Figures 3(d)-3(f) show the results of similar
mode sorting experiments performed with modes randomly
chosen within a set of LG modes of radial number p = 0
and azimuthal number ¢ € [—12;12]]. Here we recalculated
the matrix P associated with the LG mode basis and the
mode sorting phase masks using Eq. (1) while using the
same unmodified TM. Figures 3(d)-3(f) show the measured
crosstalk matrices and calculated phase masks (insets) used
for sorting d =5, 10, and 15 modes, with sorting ability
values between 82(3)% and 15(6)%.

Using the setup shown in Fig. 1(a), the experimental tests
performed to characterize a given mode sorter are limited
to sets of input modes that can be created by phase-only
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FIG. 4. Average sorting ability values for the Fourier (red middle
line), LG (blue lower line), and random (green upper line) bases as
a function of the number of modes d. Each value is measured by
averaging over ten experiments performed with randomly chosen
input modes and output positions. The results in the case of the
random basis are obtained by simulating light propagation using an
experimentally measured TM. The error bars represent the variations
of the sorting ability values within the corresponding crosstalk matri-
ces. Fitting models of the form 1/(1 + Ad?) + B are represented by
solid black lines. Fitting processes return the parameters A = 0.005
and B = 0.008 (Fourier), A = 0.009 and B = 0.008 (LG), and A =
0.002 and B = —0.004 (random), with coefficients of determination
r? > 0.997.

modulation. To illustrate the versatility of our approach, we
therefore simulated the results of mode sorting using a ran-
dom basis in both amplitude and phase. A set of modes R;
with i € [1;25]] was selected from a numerically generated
random complex Hermitian unitary 1024 x 1024 matrix (see
Appendix B). This matrix was used as P in Eq. (1) together
with an experimentally measured TM T to calculate the
mode sorting phase masks. Propagation through the MMF
was then numerically simulated by multiplying the phase-
shaped input fields by the experimentally measured TM. The
results of crosstalk matrices and phase masks are shown in
Figs. 3(g), 3(h), and 3(i) for d = 5, 10, and 25 random modes,
respectively, with average sorting ability values ranging from
97(2)% to 45(17)%. These results confirm that our approach
can be used to sort spatial modes from any arbitrary basis,
independently of their complexity.

Finally, a quantitative analysis of mode sorting perfor-
mance is provided in Fig. 4. Values of average sorting abil-
ity are represented as a function of the numbers of sorted
modes d for the Fourier (red), LG (blue), and random (green)
bases. Experimental and simulated values are in very good
agreement with a model of the form 1/(1 + Ad ) + B, where
A and B are two fitting parameters (see Appendix C). These
results show that the average sorting ability decreases with the
increase of the number of sorted modes. We also observe that
the variations of sorting abilities (error bars in Fig. 4) become
larger for high-d values. However, it is important to note that
the average focusing enhancement in our experiment is only
89, a value that can be improved by using an MMF supporting
more modes (i.e., with a larger core diameter) and controlling
more SLM macropixels. Improving the ability to focus light
will decrease the value of the slope parameter A and would

enable one to sort a larger number of modes with better sorting
ability (see Appendix C).

In conclusion, we implemented an arbitrary spatial mode
sorter in a multimode fiber using a TM-based wave-front-
shaping technique. Once the TM of the MMF has been
experimentally measured, it is used for sorting up to 25 modes
from a Fourier, LG, or random basis. The sorting ability scales
as 1/d* with the number of sorted modes d. While an arbitrary
mode sorting system would require 6d + 1 programable phase
screens to sort d modes [27], our approach bypasses this
constraint by harnessing the complex mixing process of an
MMF using wave-front shaping, at the cost of a loss in overall
efficiency. Indeed, only up to 20% of the input intensity is
sorted into the desired output positions (see Appendix A).
This loss of efficiency results from the compromise made to
be able to sort spatial modes from an arbitrary basis. Even
if this value seems quite low, it is still 100 times larger than
the overall efficiency obtained by Fickler et al. [28] using a
similar approach, due to our choice of using an MMF as the
complex medium rather than a lossy layer of TiO,. Of course,
if a mode sorting device only aims to operate on one specific
type of mode (e.g., LG modes), it is more efficient to use
the other implementations already reported in the literature
[20-26].

In essence, we showed that random mixing of light, usually
considered as a drawback for imaging and communication,
can be turned into an advantage for spatial mode sorting
applications. In this respect, the TM approach is a perfectly
adapted tool because it enables one to implement any arbitrary
mode sorting operations after a single measurement of the TM
and until the MMF decorrelates, which typically happens after
a few days due to mechanical vibrations and temperature vari-
ations (see Appendix D). On the contrary, optimization-based
approaches [26,28] require a complete optimization process to
be run each single time a mode sorting task is implemented,
which is very time consuming. For example, Fickler et al. [28]
need at least 20 min for implementing a d = 2 mode sorter
using a 50-Hz SLM and up to 4 h for d = 7, while it would
take only 80 s for a single TM measurement, making our
method more practical. Beyond mode sorting, our approach
is also promising in communication schemes in which it is
required to not only transport spatially multiplexed informa-
tion but also to sort the information at the output, as in, for
example, high-dimensional quantum communication schemes
[38—40]. In particular, the ability of our system to operate on
any arbitrary set of modes is relevant for sorting complex
superpositions, such as mutually unbiased bases, that play
a major role in quantum key distribution and entanglement
certification protocols [41,42].
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APPENDIX A: DETAILS OF THE TM MEASUREMENTS
AND FOCUSING PROCESS

1. TM measurement

The TM of the MMF is measured using the technique
detailed in Ref. [30]. At the input, the SLM is divided into
32 x 32 = 1024 macropixels composed of 16 pixels, each of
size 8 um. At the output, optical field values are measured on
80 x 40 = 3200 camera pixels by phase-stepping holography
using a nonmodulated speckle as a reference. The SLM is a
Holoeye Pluto NIR-II and the MMF is a 5-cm-long 50-pum-
diam-core graded-index MMF from Thorlabs (model No.
GIF50C).

2. Enhancement ratio

The enhancement ratio is defined as the ratio between the
intensity at a target position on which light is focused and the
average intensity before focusing [29]. This ratio characterizes
the ability of our system to focus light through the MMF
using the TM. In our experiment, we measure an average
focusing enhancement value of 89 (average value taken over
25 focusing targets).

3. Overall efficiency

The overall efficiency of the mode sorter is defined as the
fraction of the input intensity sorted into the desired output
positions. This value is estimated by dividing the enhance-
ment ratio of the focusing process by the total number of
modes supported by the MMF. As detailed in the preceding
section, the enhancement ratio is 89 and the number of modes
supported by a 50-um-diam-core graded-index MMF (Thor-
labs, model No. GIF50C) is approximately 380 at 810 nm
[43]. These numbers lead to a maximum overall efficiency of
approximately 89/380 ~ 20%.

4. Approximation in Eq. (2)

We consider T as an M x N matrix composed of randomly
distributed complex independent coefficients, with variance
o?. The elements of 7T can be written as follows.

(i) Any off-diagonal element [TT ], (k # [) results from
the complex sum of N random phasors

N
(TT N = tint],- (A1)

n=1

Therefore, [TT];; is also a random phasor with amplitude
I[TT 1| = v/No? (i.e., random walk in the complex plane).

(ii) Any diagonal element [TT 7] results from the com-
plex sum of N real elements:

N
[TT ke = ) ltnl”

(A2)
n=1
Therefore, [TT ] = NU%.
In conclusion, 7T can be written as
TT = [11 + il ] (A3)
=0
T \/ﬁ
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FIG. 5. (a) Spatial phase component of 25 input modes selected
k; within the Fourier basis. (b) Spatial phase component of 25 input
modes with azimuthal number £; € [—12;12] selected in the LG
basis. (c) Spatial amplitude and phase components of 25 input modes
R; selected in the random basis.

where H is a random matrix of complex coefficients with
unity variance. Equation (2) is then only valid for N > 1,
which is the case in our experiment (N = 1024). Note that
we can write 07 = 1 by normalizing T accordingly.

APPENDIX B: DETAILS OF THE SPATIAL
INPUT MODE BASIS SETS

1. Fourier basis
After spatial discretization, an element P;; of the change-
of-basis matrix P associated with the Fourier basis is
written

Pj =",

(BI)

where r; is the position of the ith macropixel of the SLM
and k; is the wave vector associated with the jth in-
put mode. In our experiment, we selected 25 input modes
with discrete wave vectors k; = (kx;, ky;) and with values
kxj € {—2.9;—1.44;0;1.44;2.9} x 10* radm™—!' and ky; €
{—2.9; —1.44;0;1.44;2.9} x 10*. The matrix P is used in
Eq. (1) to calculate the mode sorting SLM phase mask.
When performing the mode sorting experiments shown in
Figs. 2 and 3(a)-3(c), the phase patterns associated with the
corresponding input mode are superimposed on top of the
mode sorting phase mask on the SLM. These phase masks
are shown in Fig. 5(a).

2. Laguerre-Gaussian basis

After spatial discretization, an element P;; of the change-
of-basis matrix P associated with the LG basis is written

063830-5
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as
Pij — e*ll‘i\z/we*ilz@’ (B2)

where |r;| and ¢; are the cylindrical coordinates of the ith
macropixel of the SLM, w &~ 1.7 mm is the waist of the
collimated Gaussian beam illuminating the SLM, and £; is
the azimuthal number associated with the jth input mode.
In our experiment, we selected 25 inputs modes with £; €
[—12;12]]. The matrix P is used in Eq (1) to calculate
the mode sorting SLM phase mask. When performing the
mode sorting experiments shown in Figs. 3(d)-3(f), the phase
patterns associated with the corresponding input modes are
superimposed on top of the mode sorting phase mask on the
SLM. These phase masks are represented in Fig. 5(b).

3. Random basis

The change-of-basis matrix P associated with the random
basis is a random complex unitary Hermitian matrix of size
1024 x 1024 numerically generated by a computer. We se-
lected 25 inputs modes of this basis denoted by R; with
i € [1;25]. The corresponding submatrix is used in Eq. (1)
to calculate the mode sorting SLM phase mask. Amplitudes
and phases of the selected modes are shown in Fig. 5(c). As
explained in the main text, the results shown in Figs. 3(g)-3(i)
and 4 were obtained by numerically simulating the propa-
gation of the random input modes using an experimentally
measured TM.

APPENDIX C: FITTING MODEL OF SORTING ABILITY

1. Definition of sorting ability
The sorting ability p, associated with the nth input mode is

calculated from the coefficient of the corresponding crosstalk
matrix using the formula [26,28]

If’ll‘l

22:1 L ’
where I, is the coefficient of the crosstalk matrix linking input
mode n to the output position k. The average sorting ability p
is therefore calculated by averaging over all the input mode
sorting ability values

Pa (€D

d
P=Y pu (C2)
n=1

The associated standard deviation o, is calculated using the

formula
[y~d _ 52
O_p — Zn:](Zn P) ) (C3)

2. Fitting model

We build the fitting model of p (Fig. 4) on theoretical
results already reported in [29,30]. We analyze separately the
diagonal and off-diagonal coefficients of the crosstalk matrix.

(1) The SLM phase mask calculated using the TM and
programed onto the SLM to implement a d-dimensional mode
sorting operation results from the superposition of d phase
masks, each mask being the phase pattern used for focusing

°o o o
D o)} (e8] =

Average sorting ability
o
N

o

10 15 20 25
Number of sorted modes d

[y
Ul

FIG. 6. Simulated average sorting ability values for random basis
mode sorting are shown as a function of the number of modes d
using a different number of active macropixels on the SLM. Curves,
from top to bottom, are associated with N = 1024, which returns
a coefficient of A = 0.002; N = 768, which returns a coefficient of
A = 0.004; N = 512, which returns a coefficient of A = 0.008; N =
256, which returns a coefficient of A = 0.03; and N = 150, which
returns a coefficient of A = 0.06.

light at a given position on the camera when the SLM is
illuminated with a given input mode. Such a phase mask
superposition is analogous to the phase mask superposition
process used for focusing light through a complex system
at multiple positions with an SLM illuminated by a single
constant mode. In this latter case, it is demonstrated that
the focusing intensity decreases as 1/d, with d the number
of target positions [29,30]. By analogy, we conclude that
the diagonal coefficients of the crosstalk matrix scale as
Ly, ~ 1/d.

(i) The average intensity of the crosstalk matrix off-
diagonal coefficients equals that of the grains in the output
speckle pattern [29]. This average intensity value is constant.
Therefore, their sum scales as d.

We therefore conclude that

1 & Ji
p=- ~ . (CH
d o [1,,,1 + Zk# Ik,,:| 1+ Ad?

where A is a coefficient that depends on the focusing effi-
ciency of our system, which includes the number of active
macropixels of the SLM. The black curves shown in Fig. 4
are obtained by fitting the experimental data with a model of

the form H_# + B, where {A, B} are the fitting parameters.

3. Dependence of A with the number of active
macropixels on the SLM

The dependence of the parameter A with the number of
active macropixels on the SLM is investigated in Fig. 6. This
figure shows the results of five simulations of mode sorting in
a random basis performed using different numbers of active
macropixels on the SLM, ranging from 1024 to 150. We
observe that the value of the coefficient A, and therefore
the slope of the corresponding curve, increases when the
number of active macropixels decreases. This confirms that
the parameter A directly depends on our ability to refocus light
through the MMF.
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FIG. 7. Stability curves of a MMF (red) and a layer of TiO,
(blue) obtained by measuring speckle correlation over time. The
MMF is a 11em-long 50 um-diam core graded-index MMF (Thor-
labs, model No. GIF50C). The layer of TiO, is a thick and dry
layer of white paint positioned on a microscope slide. These stability
experiments are performed by illuminating the complex system
(MMF or layer of paint) with coherent light at 810 nm and measuring
the speckle pattern produced at the output. Then a correlation value
is calculated at time ¢ by correlating the speckle image captured at
time ¢ with a reference speckle image taken at time r = 0.

APPENDIX D: STABILITY OF THE MODE SORTER

Figure 7 shows stability measurements performed using
a 11-cm-long graded-index MMF (red curve) and a layer of
TiO; (blue curve). These results demonstrate that the MMF
is very stable (more than 97% correlation) over more than
14 h, while the layer of paint decorrelates very rapidly.
Note that these two stability experiments were performed in
a temperature-controlled laboratory, without putting a box
around the fiber and the layer of paint. In the experimental
setup described in Fig. 1, we used an MMF of the same type
but twice shorter (5 cm long) and positioned inside a box,
which is expected to be even more stable. Our mode sorting
system is therefore stable over a characteristic time on the

order of a couple of days. In practice, we were remeasuring
the TM of the fiber only every two days.

APPENDIX E: DETAILS ON THE MMF AND ITS IMPACT
ON THE MODE SORTING PERFORMANCE

The MMF is a 5-cm-long graded-index multimode fiber
with a 50-pum-diam core from Thorlabs (model No. GIF50C).
The MMF supports approximately 380 spatial modes at
810 nm. It is important to note that the number of modes sup-
ported by the fiber, which strongly influences the performance
of the mode sorter, depends only on the type of fiber and its
core diameter but not on its length. However, the length of the
fiber still impacts the performance of the mode sorter through
(a) the stability of the whole device, (b) its spectral dispersion,
and (c) its overall loss.

(a) The longer the fiber, the more it is sensitive to me-
chanical vibrations and temperature variations. These effects
can cause small modifications of the fiber structure, which
will change the way light is mixed in the fiber and then its
corresponding transmission matrix. If the fiber is too long, the
transmission matrix will have to be regularly remeasured over
time to remain valid for implementing the mode sorting. In
our experiment, the MMF is a 5-cm-long fiber located inside
a box and in a temperature-controlled laboratory. It is stable
over a time on the order of a couple of days (see Appendix D).

(b) A different wavelength travels at a different speed
through the fiber and therefore experience different mixing
processes. Such a spectral dispersion effect is studied, for
example, in [34] in the case of very short optical pulses prop-
agating through MMFs. The presence of spectral dispersion
reduces the ability to manipulate light propagating through the
MMF by wave-front shaping and then diminishes the sorting
ability and the overall efficiency of the mode sorter. In the
case of (quasi)monochromatic light, the effects of spectral
dispersion are only visible after propagation through very long
fibers, typically of lengths on the order of kilometers.

(c) The losses in the MMF used in our experiment are
around 2.3 dB/km at 810 nm. Therefore, they will have a
significant impact on the overall efficiency of the mode sorter
only in the case of very long fiber, e.g., kilometer-long fibers.
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