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Emission of correlated photon pairs from superluminal perturbations in dispersive media
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We develop a perturbative theory that describes a superluminal refractive perturbation propagating in a
dispersive medium and the subsequent excitation of the quantum vacuum zero-point fluctuations. We find a pro-
cess similar to the anomalous Doppler effect: Photons are emitted in correlated pairs and mainly within a
Cerenkov-like cone, one on the forward and the other in backward directions. The number of photon pairs emitted
from the perturbation increases strongly with the degree of superluminality and under realizable experimental
conditions; it can reach up to ~10~2 photons per pulse. Moreover, it is, in principle, possible to engineer the host
medium so as to modify the effective group refractive index. In the presence of “fast-light” media, e.g., a with
group index smaller than unity, a further ~10x enhancement may be achieved and the photon emission spectrum
is characterized by two sharp peaks that, in future experiments, would clearly identify the correlated emission of

photon pairs.
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I. INTRODUCTION

Since the analysis of Schwinger [1] a great amount of
research has been devoted to the study of particle production
from the vacuum. In a seminal paper [2], Hawking predicted
that the presence of a horizon around a black hole induces
particle production. Actually, the existence of Hawking ra-
diation does not require a gravitational collapse, but, rather,
the key elements are a quantum field and an event horizon
associated with a curved space-time metric [3—7]. Another
mechanism providing particle production is the dynamical
Casimir effect [8]. There, a two-dimensional quantum theory
of a massless scalar field is considered that is influenced by the
motion of a perfectly reflecting boundary (mirror). The vacuum
expectation value of the energy-momentum tensor for an
arbitrary mirror trajectory shows a nonvanishing radiation flux.

Here we consider a further effect by which particle produc-
tion is induced by the superluminal motion of a perturbation
of the refractive index in a dielectric medium with dispersion.
Differing from the Hawking effect, the production of particles
is not induced by the presence of a horizon but by the fast
motion of the perturbation. Therefore, this effect can be better
recognized in the context of the anomalous Doppler effect
[9-12]. Following the description given by Ginzburg, light
emitted by a generic moving source will be Doppler shifted ac-
cording to the formula w(f) = &'/y|1 — v/cn(w) cos O] [12],
where ' is the comoving reference frame value of the emitted
frequency, 0 is the observation angle and y = 1//1 — v%/c2.
For v/cn(w)cos® < 1 we have the normal Doppler effect
but for v/cn(w)cos6 > 1, i.e., for a superluminal source we
have the so-called anomalous Doppler effect (see Fig. 1).
Emission of a photon on behalf of the moving source must,
in general, correspond to a change in the internal state, e.g., a
transition in energy from one level to another. In the normal
Doppler regime, a positive-frequency photon, thus, will be
emitted with a spontaneous transition from an upper to a lower
energy state. In much the same way, in the anomalous Doppler
regime a negative-frequency photon (positive frequency in the
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laboratory reference frame) will be spontaneously emitted in
combination with a transition from a lower to a higher state.
The energy required for this process is provided by the super-
luminal translational movement. Therefore, the superluminal
source will continuously emit pairs of photons, one in the
anomalous and the other in the normal Doppler regions [12].
Anomalous Doppler emission has never actually been ob-
served before due to the obvious difficulty in actually realizing
an experimental system in which to observe these effects.

In this work we extend the same concept proposed to
generate event horizons in optical media: An intense laser pulse
focused into the medium will induce a local increase in the
refractive index and this create a perturbation in the dielectric
medium (PDM) that travels locked with the laser pulse itself
[5,7]. Laser pulses will typically travel at a well-defined group
velocity so this kind of PDM is ideal for creating the analog
of an event horizon. However, by properly choosing how the
laser pulse overlaps with the dielectric medium, it is possible
to generate a PDM that travels with any arbitrary velocity.
For example, recent experimental results clearly show that it
is possible to generate isolated peaks within the laser pulse
that travel faster than the vacuum speed of light, ¢ [13,14].
Within the context of these findings we, therefore, consider
the problem of how a superluminal PDM interacts with the
zero-point fluctuations of the surrounding quantum vacuum.
This same problem was first tackled in Ref. [15], where it
was shown that, in a dispersion-less medium, a superluminal
PDM will spontaneously emit photons that are excited from
the vacuum state. The photons appear as correlated pairs and
their wavelength decreases from the far-infrared to the visible
region as the PDM velocity is increased from ~c to many
times c. Here we extend these results to a dispersive medium
and we consider in more detail the nature of the correlated
photons and possible experimental implementation. We also
consider how the correlated photon pair emission may be
enhanced by properly engineering the vacuum states, i.e.,
by using media in which the effective group velocity at the
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FIG. 1. (Color online) Schematical representation of normal and
anomalous Doppler emission from a “source” moving with velocity
v.

emitted frequencies is also superluminal, so-called fast-light
media [16].

II. NONDISPERSIVE CASE

We start by briefly summarizing the main results and
equations for the nondispersive case treated in Ref. [15].

An intense light pulse induces the perturbation of the
refractive index through the optical nonlinear Kerr effect.
This perturbation travels across the medium at the same
speed of the light pulse. The medium was supposed to
be nondispersive. The authors find that there is no pair
production unless the pulse velocity v satisfies the condition
v > -, where ¢ is the velocity of light in vacuum end ng
is the uniform and constant background refraction index.
The model analyzed is based on the perturbative approach
introduced by Schiitzhold et a/. in Ref. [17] and the interaction
representation for the electromagnetic field in the presence of
a dielectric constant €(X,t) depending on space and time is
considered. Moreover a uniform background and a constant
value ¢, = ”o for the dielectric constant are assumed. Thus, the
disturbance is €(X,t) — €,. Following Ref [17] the 1nteract10n
Hamiltonian is H; = £T1%? with £ := E(x 5= ] and the

number of particles created, labeled by the momentum k and
the polarization u, is

w1
Nklﬂl - Z 2

ka

Eky +k)IP[1— (B, - 2,,)° ] (D

where k = (k,w;) = (k,ck/no), with k = |k|, & = k/k, the
subscripts 1 and 2 label the particles of the emitted couple,
and the particular shape of the perturbation is contained in the
function £. Considering a Gaussian behavior for the refraction
index n? = e(x,t,y,2),

2

2120 .21/942
n? = n% + 2ngne 1TV 207 2

the expression for the number of created particles becomes [18]

Nkl 0 _22 6__/dk/wlw2 —0 |k|+k2| [(S((l_él +I_é2)x

= ot *k”)] [1- (@, - &,,.) ) (3)

The 6 function gives a constraint on the possible values of the
momenta for the emitted particles.
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III. DISPERSIVE CASE

A. Perturbation

When considering actual experiments, the previous model
should only be considered as an approximation of a real
medium and one has to take into account the presence of the
dispersion. In this section we generalize the model of Ref. [15]
for dispersive media. To introduce dispersion in the model we
have to refine the approach leading to the expression for the
number of emitted particles. The first step, up to Eq. (19), is
to derive the Hamiltonian for a superluminal perturbation in
a dispersive medium. This Hamiltonian will then be used, in
a similar fashion to the treatment in Ref. [15], to derive the
number of particles excited out of the vacuum state. Let us
write the dispersive electromagnetic action as [19]

1 2 D4
S = 3 E -¢Edx", “)
where ¢E is

eEGF,1) = e(F,id)E(F.1). (5)

The variation of the action [Eq. (4)] with respect to the potential
related to the electric field, E, gives the Maxwell equations,
with no free charges, for E. We will not specify the operator
& now, but we will assume for it to be a symmetric operator.
We will also assume that its inverse operator £ ! exists. The
unperturbed canonically conjugate momentum is then

=¢E, (6)
as can be computed from Eq. (4) using the Lagrangian
formalism. If we expand in Fourier series the electric field
and the conjugate momentum as

E,(F) = / e E(F 1t (7)
R
M,(F) = f ¢TI, 1), (8)
R
we can write
- = 1 . d -
E=¢"Tl=— [ & I, )dw. 9)

27 Jr e(F,w)

We introduce a perturbation &(¥,id;) — &(7,id,) + Se(F —
vt,i;). To proceed, we note that now the momentum is

M =¢E + 8¢E. (10)

To describe the Hamiltonian we have to invert this operator in
order to express the electric field in terms of the momentum.
This can be done perturbatively. The perturbative series
expansion is expressed in terms of a (small) parameter 7 so

Se(F — vt,i0,) = ney(F — 0t,i0,). an
We next write
E=Ey+nE +---, (12)
where the dots are higher orders in 7. We then have
I = eEo + n(e1 Eo + ¢ E1), (13)

where we have neglected the term née E; = n*s; E; being of
second order in n. Equation (13), compared with Eq. (6) at the

033833-2



EMISSION OF CORRELATED PHOTON PAIRS FROM ...

first order, gives

-

M = ¢E,, (14)

Eél = —81E0. (15)

Therefore, we may quantize the theory perturbatively by using
the unperturbed momentum operator I and the perturbation

SE = nEy = —e '(8¢Ep) = —e '(8e ¢ 'TI).  (16)

We now calculate the integral of the whole space-time of the
Hamiltonian density by taking the Legendre transformation of
the action. Using the expression for the unperturbed momen-
tum and of the perturbation, the Legendre transformation is
V= 24 1 [ 54
— [ I-Edx"=—- | I1-¢ 'Ildx
2 2
1 [ - .
—5/1'1 e (8 e dx* + - - -
L= g4
=— | IT-¢ Ildx
1 = —
—5/8_11'1-88 e Mdx*+---, (17)

[\

where the dots are higher-order terms and we have used the
symmetry of e~! (and dropped total time derivatives).
Thus, the Hamiltonian density is

H =Ho+ Hy, (18)

where Hj is the unperturbed Hamiltonian (with dispersion)
and

H; = e . 5e e 'TT (19)

is the first-order perturbation, which reduces to the
Hamiltonian used in Refs. [15,17] in the absence of dispersion.

The perturbative computation is then carried forward
starting from this expression, and, as in the nondispersive case,
we adopt the interaction representation.

IV. THE MODEL

Consider a perturbation of the refractive index moving in
the x direction with velocity v, i.e., n(w) 4 én(x — vt) and
assume that the w dependence of the term dn is negligible.
Thus, at the first order in 8n the dielectric constant is €(w)? +
2n(w)dn(x — vt). The perturbation term (19) may be taken as
an operator that we can write formally (from now on we will
omit the subscript 0) as

H; = —%E&E =—E [n(i3,)8n(x — vi)]® E’ (20)

where the apex S implies the Weyl prescription for the
maximally symmetrized operator [20]. The perturbative ap-
proach used here may be justified by evaluating the main
parameters under investigation. We expect to observe a similar
behavior to the nondispersive case for which there is a peak
of emission for Ay.,x = 30 [15], where o is the radius of the
Gaussian-shaped perturbation. It is reasonable to expect that
the perturbative approach works if the measured wavelength
A satisfies /A >> 5. For example, if n is of the order of
0.01-0.001 the perturbative approach is justified for emitted
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wavelengths well below 100 nm if o ~ 1 um. In this situation
the operator appearing in Eq (20) can be approximated by the
more tractable one, ——Ele ) (@i d,)8n(x — vr))S E ~

—E8n(x —vn(i 8,)E, in which the operator n(id;) acts just

on the electric field E and not on the variation of the refractive

index dn(x — vt). This perturbation has the same form as

the interaction Hamiltonian 7; considered in Ref. [17], cf.

Eq. (59). In the present case §n(x — vt) plays the role of & (¥,t)
a5

and the electric field of I1. These considerations allows us to
apply the perturbative scheme of Ref. [17]. The expression
of the electric field E is (see Ref. [21], Eq. (31), coherently
adapted to the notation of Ref. [17]),

o . W \172 1
E(r,t)y=i Z (ﬁ) —n(a))ng(w)

kp

x lag, 0™ —al e e, Q1)

d (n (u))w)

where ng(w) = = n(w) + a)d"(‘“) = m and k =

k,w) = (%,ck,n(w)), with k = [k| and &; = 1?/k. The action
of the operator n(id;) on the electric field E is

nid)E = n(id,) / e i E, dk

— / n(w)E,dk, (22)

where E, are the Fourier modes in the expansion [Eq. (21)]
of the electric field. The operator n(id;) acts on the integrand
and can be expanded in power series in id,. The temporal
derivatives act just on the exponential and one obtains a
power series in w that resumed gives n(w), see Ref. [19].
Thus, inserting Eq. (22) in the expression of the interaction
Hamiltonian, the number of particles of momentum 121 and
polarization u| per unit of volume generated by the disturbance
‘H; turns out to be

Nty = (Nigyy) = (Yt = —00)| Ny, [ (t — 00))
- / d*x, f d* 2 (01 H, (1) R o Ho (6210,
23)

where Ny, W = &/},m&ﬂ 4, is the number operator and v/ (r —
+00) are the free field, i.e., the solutions of the equation of
motion when the interaction is switched off. Actually, we can
suppose that the interaction is present just for a finite interval of
time and far from this interval the dynamics is governed by the
free Hamiltonian. To compute the vacuum expectation value

in Eq. (23) we use Eq. (21), with the fields evolving freely, i.e.,
agu(t) = akue_”"’ and, defining f (k) := (—)1/2 m, we
obtain the expression,

N = / d'xid*x (00 Y flka)fka) f(ks) f (k)
lzllll,/_ézll«z,

K3z, kapa

Ao Ao AT oA AT = N
XAk € Hoypnn o aﬁﬂakﬂaE3M3 ks al?“u Chas
—i(ky+ki)x; ei(k3+k4)xz |0),

(24)

X 8n(x,)Sn(xy)n(@n(ws)e
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where the argument x of dn is a four-vector and, in our
particular case, it depends juston x and # as x — vt. We indicate
with a tilde the four-dimensional Fourier transform g(k, %) =
7ok
[ dtdxdydz g(%,1)e’" """ and, using the commutation rules
for the operators a; and a,i, [ak, ,u, ,aZZ,M] = 8(k1 — k2)d,, 115>
we obtain,
Ni, = FR1)? Y Sniky + ko) f (ko) [n(e1) + n(en)]?
lzzm
2

X (e/;ml ’ e/_ézﬂz) : (25)

The space-time dependence of the perturbation dn is of

the form én(t,x,y,z) = dn(x — vt,y,z). Hence, using the
variables u = x — vt, w = x + vt, the Fourier transform of

on is
C kl kz
v [n(wl) * n(wz)D

Sn(k; + k)
x /du dy dzén(u,y Z)ei(ku+k2x)u+i(k1v+k2y),v+i(k1:+k2z)z_

2
=-£6<hx+kh—
v

(26)

A. Superluminality emission cones

As for the nondispersive case, this last result is very
meaningful from a physical point of view. The support of the
§ distribution gives precise conditions for the possible states
of the emitted particles. First, we analyze the condition given
by the § function in the nondispersive case. Its argument gives
the constraint,

(klx - ikl) + (kzx - ib) =0. (@)
vny vnyp

This equation implies that whenever ki./k; > c/(vng), the
second photon must satisfy k»./k», < c/(vng), i.e., from
every pair of emitted photons, one photon is emitted inside
the Cerenkov cone, 8y = arccos(c/vng) (anomalous Doppler
region, see Fig. 1), and the other is emitted outside the cone,
in the normal Doppler region.

In the dispersive case we cannot always identify distinct
cones of emission for the photons as before. The § function
gives the following condition:

c c
(klx - m/ﬂ) + <k2x - mb) =0. (28)

Similarly to the nondispersive case, this equation im-
plies that whenever k./k; > c/[vn(w;)], the second
photon must satisfy ky./ky, < c/[vn(w;)]. In terms of
emission angles for the two photons, we find 6, <
arccos{c/[vn(w1)]} and 6, > arccos{c/[vn(w,)]}. Therefore,
if arccos{c/[vn(w;)]} > arccos{c/[vn(w,)]}, the two cones
overlap and, if arccos{c/[vn(w;)]} < arccos{c/[vn(w,)]},
there is a gap between them. In the first case, there is a
region in which both photons can be emitted (differing from
the nondispersive case), whereas in the second case there
is a region in which no photon at all can be emitted. The
two cases are shown in Figs. 2(a) and 2(b), respectively. The
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FIG. 2. (Color online) Schematical representation of correlated
photon pair emission from a superluminal perturbation moving with
velocity v in the presence of dispersion: the Cerenkov cone is split
into two and, depending on the medium dispersion and frequency of
emitted photons, regions in which no photons or both photons are
emitted may appear. For the case of normal dispersion (refractive
increases with increasing frequency), the figure shows the situation
for w; < w, (a) and w; > w, (b).

nondispersive case is obtained in the limiting situation in which
arccos{c/[vn(w;)]} = arccos{c/[vn(w,)]}.

1. Gaussian shape of the perturbation

We now focus attention on the problem of determining the
actual number of emitted photons, starting from the assump-
tion of a Gaussian shape for the refractive-index perturbation
Sn = r]e_m%[(x_w)2er "+ This form for the perturbation is
what one may expect when a local refractive-index variation
is induced by a laser pulse through the nonlinear Kerr
effect. Indeed, laser pulses typically have a Gaussian-shaped
intensity, I, profile along both longitudinal and transverse
rdinates so dn, I, where n, is the nonlinear Kerr index, will
have the same form. A typical value for n, for example, in fused
silica glass, is ~0.001 where n; ~ 3 x 1071 cm?/W and we
take I ~ 3 x 10'> W/cm?. Inserting this 8n profile in Eq. (25),
usingY ; > V [ dﬁé#, and summing over the polarization

. L2 Btk
states w1 and puo,using 3, (ex - €p,,,)" = e we

obtain,

R o
vV nX(en)ng(r)

ﬁ@+@p&f)

=S T V) w)
Ny, = d3k2e o”lki+ka|

n(wp)ng(wz)

x [n(w1) + n(w2)]* ( e
! 2

X {5[k1x + kox — ;(wl + wz)]} . (29)

Note that in the nondispersive limit, i.e., % =0, the
expression for the number of emitted particles Ny, reduces
to Eq. (3).
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2. Hyperbolic tangent shape of the perturbation

We can consider another shape for the perturbation of
the refractive index. In particular, let us focus on a profile
given by a hyperbolic tangent function. This allows us to
investigate how the particular geometry of the perturbation
affects the maximum of the wavelengths and the number of
emitted particles. Moreover, a tanh shape may arise if, for
example, the dominant refractive variation is related to plasma
generated through multiphoton or tunneling ionization by an
intense laser pulse. Intense laser pulses may indeed efficiently
ionize the medium within the first few optical cycles and, thus,
create a very steep moving plasma front followed by a nearly
constant plasma density that will decay (through electron
recombination) over time scales of the order of ~100 fs
in condensed media or ~1 ns in gaseous media [22]. This
situation, therefore, may be adequately approximated by a
tanh-like function. We also note that a plasma front will locally
reduce the refractive index (én < 0) as opposed to the Kerr
effect that will usually increase the refractive index (én > 0).
Yet the result of the calculations depends not on the sign of én
but only on its amplitude, velocity, and physical dimensions.

The shape of the perturbation, therefore, is taken as

_ )t 2

W32,

x —
én = ntanh
UX
Again, we use the variables u = x — vt, w = x + vt, and y
and z unchanged. Repeating the same computation as above,
we obtain,

2222 2
Nk=00yaz'7”7f / w2
1 vtV n2(w1)n2(a)1) n2(a)2)n§(w2)

X CSCh2 I:T[T(klx + kzx):leig)v(kly"FkZ}') efazz(klz‘i’k'lz)z
K22+ (k) - ko)?
xM@»+Mmﬁ<4i—7§¥L
klkZ

2
X [5 (klx + ko — %(wl + wz))} . (30)

Form these relations for the total emitted photon numbers
it is immediately apparent that it is advantageous to keep a
large a perturbation as possible with each of the longitudinal
and transverse dimensions oy, . contributing equally in the
multiplicative prefactor. As shown below, it turns out that
the tanh profile emits roughly half the number of photons
of a dimensionally similar Gaussian perturbation, indicating
that the main role is played by the transient switch-on and
-off of the perturbation. We also note the dependence on the
group refractive index at the emission frequency. As we shall
discuss below, this allows an additional degree of freedom for
enhancing or controlling the photon emission process.

B. Numerical analysis: Gaussian shape

The nontrivial dispersion relation appearing in Eq. (29)
makes the dispersive case more intricate to analyze, even
numerically, than the nondispersive one. We perform the
numerical analysis in fused silica where, for completeness, we
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show the full dispersion law given by the Sellmeier relation
[23],

alkz az)\z 613)»2 12 31
R R E R A E R F ol Gl

n(x) = Re [1 +

where

a; = 0473115591,
ar =0.631038719,
az = 0.906 404 498,

I; =0.0129957170,
I, = 4.12809220 x 1073,
I; = 98.768 532 2.

As in the nondispersive case, the § distribution in Eq. (29) gives
a constraint that furnishes a relation between the momenta
of the produced particles. In principle, a component of the
momentum, say k., could be expressed as a function of
the other ones, so by integrating over k», and kj, one
could find explicitly the function Nj, giving the distribution
of the produced particles as a function of the momentum.
However, for a generic dispersion law, the constraint cannot
be analytically solved. We, therefore, study the critical points
of the integrand of Eq. (29) that we will call Ny, k,. This is
a function of five variables, because the six components of
the momenta are not all independent due to the constraint
given by the §. The symmetry of the problem allows us to
restrict the analysis to the planes k;, = 0 and k,, = 0, reducing
the number of variables to three. This function describes the
distribution of emitted couples as function of the momenta
k, and k,. Its maxima show the momenta of the couple
of particles emitted with highest probability. Therefore, the
effective number of emitted particles can be found integrating
this distribution. We note that the maximum of the function
Ny, 1, 1s located around 6; = 0 and 6, = 7. Indeed, in Eq. (29)
all factors gepeILd on 121 an l_éZ by their modulus except for
the terms |k, + k2|2 and (ky - %2) depending on the relative
orientation between the two wave vectors. For ﬁxed ki and
ko, the functlon Ny, k2 is maximum for small |k1 + k2|2 and
large (k1 k2)2 Let k1 (k1x,k1y,0) = (ki cos 0,k sin6;,0)
and kz = (kay,k2y,0) = (k2 cos 6,k; sin 6,,0), then

ki + ka)? = k} + k3 + 2k ky cos(6, — 61)
> k7 + k3 — 2kika,
(k - k') = [kiky cos(6, — 0))]> < k33

The two conditions are both satisfied for 6, — 6; = 7, i.e., the
two vectors point in opposite directions. The condition glven
by the § function in Eq. (29) is kjx + ko — £ (n(wl) n(wz)) =
0 that can be rewritten as kjcosf; — krcos6; — f} n(kl;])

%n(szz) = 0, where 6, is the angle between 121 and the x axis
and, consequently, 7 + 6, the angle between k; and the x axis.
As observed before, the maximum of Eq. (29) depends only

on ki, kp, and k; - k», Thus, at the maxima we have

d ..
%[Nkl,kg(kl’k%kl ~ky) + Ag(ky,kz,61)]
1
= 4 ek = Ak
_d0 8(K1,K2,01) = 1 —

where A is a Lagrange multiplier. With k; and k, in general
being not equal and A # 0, we, therefore, have 8; = 0. We also

kz) sin 91 = 0,
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~

2
Ay (pm)

FIG. 3. (Coloronline) (a) Log,(, Ny, ., for ki, corresponding to the
maximum. (b) Maxima of log,, N, », for6; = 0,6, = m,ando =1
pm. (c) Maxima of log,y N, ., for6; =0,6, =m,and 0 =2 pum.
(d) Relation between the wavelengths of the emitted couples for g
increasing from 2, in the right part of the figure, to 20, in the left part
of the figure.

verified numerically that, indeed, the maximum of Ny, &, is at
01 = 0: We visualize this in Fig. 3(a), which shows an example
(0 =2 and B = 5) of the distribution of photon numbers in
a logarithmic scale. The two straight lines correspond to the
condition k¥ = k7, and k3 = k3_and the curve represents the
relation between A and A, given by the § function in Eq. (29).
As discussed, these three curves intersect at the maximum of
Ny, .1, implying that, indeed, maximum emission occurs along
the propagation direction 6; = 0.

We perform the numerical analysis for perturbations with
radius 0 =1 um and 0 =2 pum and for increasing values
of B. As explained, to give an estimation of the number of
emitted couples for every single PDM we have to evaluate the
integrand of the Eq. (29), i.e., Ni, x, := dN /(dQ2dQ'dkdk’).In
the computation the value of §(0) has been approximated with
L/(2m) [see Eq. (26)]. In the following we report all photon
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lratim] O

A, (um)

FIG. 4. (Color online) (a) Log,, Ny, », for 6, = 0, 6, = 7 and for
a hyperbolic tangent shape of the perturbation. (b) Correlated photon
wavelengths for § increasing from 2 (top right point) to 20 (bottom
left point).

4 6
A (um)

numbers in the function of wavelength rather than wave vector
(thus indicated as N,, ;,) and integrated over the azimuthal
angles ¢; and ;.

Figures 3(b) and 3(c) show the calculated photon numbers
N, », inlogarithmic scale for the value of A, at which emission
is maximum and for n = 0.001, two different values of the
perturbation size, 0 = 1 and 2 wm, respectively. Figure 3(d)
shows both wavelengths A = Ajmax and Ay = Aopmax at which
emission is maximum and for 2 < 8 < 20. At lowest 8, A4
and A, have the largest values and monotonically decreases
and B increases. These points are also shown for the two
values of o considered, 1 «m (blue dots) and 2 pm (red dots).
We observe that the photon emission peaks at wavelengths
Almax> Which increases with the perturbation diameter. We
also note that, as in the nondispersive case [15], Aimax and
Aomax decrease from the midinfrared region into the visible
region as B, i.e., the perturbation velocity, increases. However,
differing from the nondispersive case, we underline that, in
general, A max and Aoy differ, i.e., the photons are correlated
but at different wavelengths. However, for increasing B this
difference becomes smaller with Ajpax — Aomax a8 B — 00
(Fig. 3(d) and 4(b)).

Some numerical values of Ny, ,, from these graphs are
given in Table I [(a) and (b)]. An estimation of the actual
number of emitted particles can be obtained by integrating
the function N, ,, over A, 6, and 6,: This furnishes, for n =

TABLE I. Maxima of N, ;, for increasing 8 and two values of o. Numbers in square brackets denote powers of 10.

(@) o =1pum (b) 0 =2 um
A Imax }‘12max A Imax }‘12max

B m m N, B m m N s,

2 2.51[—6] 4.98[—6] 6.13[-7] 2 3.93[—6] 7.02[—-6] 4.14[-8]
3 1.93[—6] 3.06[—6] 6.68[—6] 3 3.50[—6] 5.38[—6] 2.14[—6]
4 1.54[—6] 2.17[—6] 3.01[-5] 4 2.95[—-6] 4.11[—6] 1.27[-5]
5 1.26[—6] 1.66[—6] 9.35[-5] 5 2.49[—6] 3.26[—6] 4.28[-5]
6 1.08[—6] 1.36[—6] 2.33[—4] 6 2.13[-6] 2.68[—6] 1.11[—4]
7 0.94[—6] 1.15[-6] 5.02[—4] 7 1.87[—6] 2.69[—6] 2.44[—4]
8 0.83[—6] 0.99[—6] 8.73[—4] 8 1.65[—6] 1.96[—6] 4.80[—4]
9 0.75[—6] 0.87[—6] 1.74[-3] 9 1.48[—6] 1.73[—6] 8.69[—4]
10 0.68[—6] 0.78[—6] 2.91[-3] 10 1.35[—6] 1.54[—-6] 1.47[-3]
15 0.47[—6] 0.52[—6] 2.09[—2] 15 0.92[—6] 1.00[—6] 1.11[—2]
20 0.36[—6] 0.39[—-6] 8.19[-2] 20 0.70[—6] 0.75[—6] 4.63[—-2]
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FIG. 5. (Color online) Dispersion law (a) and group index (b) for
the modified dispersion law of the fused silica. (c) Log,,N,, , for
the standard dispersion law of the fused silica. (d) Log,,N;, 5, for the
modified dispersion law of the fused silica.

0.001,0 =1 um, B = 20, and a 5-cm propagation distance, a
number of emitted photons for every PDM in an angle of 30°
of ~3 x 1074,

C. Numerical analysis: Hyperbolic tangent shape

We perform a similar numerical analysis for a hyperbolic
tangent shape of the perturbation of the refractive index by
studying the integrand of Eq. (30). Adapting the previous
argument to this case, we search its maxima in the direction
of the propagation of the PDM, i.e., for 6 = 0. We assume a
perturbation with dimensions o, = 1.1 um and 0, = 0, =1
pum and n = 0.001. An estimation similar to the Gaussian
case, for B =20 and a 5-cm propagation distance, gives a
number of emitted photons for every PDM in an angle of 30°
of ~1.5 x 1074,

D. Fast light

We now return to a feature outlined earlier on, i.e., the
dependence of the photon emissivity on the group index at the
emitted frequencies [see, e.g., Eq. (29)]. From our equations it
is clear that by a reduction in the group velocity at w; and/or
w, may greatly influence the actual number of emitted photons
at both frequencies. Group velocities exceeding the speed
of light have been observed in several experiments [24-28],
whereby the medium is chosen either to have an absorption
resonance close to the frequency of interest or is structurally
modified, e.g., into Bragg grating structures so the disper-
sion curve is strongly modified (without absorption). This
property, therefore, can be exploited to effectively engineer
the (dispersion properties of the) vacuum states, increasing
the number of emitted photons and, moreover, providing an
additional tool for investigating the correlation properties of
the produced couples. We emulate such superluminal group
velocities by introducing a simple Lorentzian correction on
top of a background Sellmeier relation. We, therefore, obtain
a dispersion law with a narrow peak whose maximum slope

FIG. 6. (Color online) Dispersion law (a) and group index (b) for
the modified dispersion law of the silicon. (c) Log,,Ny, ,, for the
standard dispersion law of the silicon. (d) Log,,N;, ., for the modified
dispersion law.

is placed in correspondence to the point of the highest photon
emission for a medium characterized only by the background
dispersion. We give an example of such a modified dispersion
law for the fused silica in Fig. 5(a) and the corresponding
group index, n,(w)(M()) — A(w) 2, in Fig. 5(b).

We then perform the analysis for a PDM of Gaussian shape
with n = 0.001, 0 = 1 um and traveling at 8 = 20 in such a
medium. In Fig. 5(c) we show the distribution of the emitted
couples in a medium with the background dispersion law and
in Fig. 5(d) the distribution produced by the same perturbation
in a medium with the Lorentzian correction to the dispersion.
As a first comment, we observe that the number of emitted
particles increases by a factor of 10 due to the dependence of
Eq. (29) on the group indices n,(w;) and ng(w>). Moreover, the
emission spectrum is strongly distorted but, most importantly,
two distinct maxima appear. These two peaks are related
to enhanced emission separately at A; or at A,. In virtue
of the nature of the two emitted photons, enhancement at
one wavelength will necessarily lead to enhancement at the
correlated photon wavelength. Therefore, observation of these
two emission peaks in an experiment could be considered as
evidence of correlated photon emission from the superluminal
perturbation by measuring only in the forward direction. We
performed a similar analysis for the case of silicon, as this is
a widely used material in optics and waveguide technology
where both slow and fast light may be engineered. We obtain a
similar increase of the emitted particles as shown in Fig. 6 for
a perturbation of dimension o = 1 um and velocity 8 = 4.

V. CONCLUSIONS

Perturbative analysis of quantum fluctuation excitation
from a traveling refractive-index perturbation indicates that
emission of correlated photon pairs occurs only if v > ¢/n(w).
This effect bears a strong resemblance to the anomalous
Doppler effect and, in this sense, represents the first detailed
analysis of a setting in which the effect may actually be ob-

033833-7



DALLA PIAZZA, BELGIORNO, CACCIATORI, AND FACCIO

served. The number of emitted photon pairs is relatively small
close to the threshold v = ¢/n(w) but increases significantly
if v is much larger (e.g., 10-20x) than c. Our analysis fully
accounts for material dispersion and, in doing so, introduces an
intriguing dependence on the group index or group velocity of
the emitted photons. This dependence and careful engineering
of the host medium may be used to enhance photon emission
by at least an order of magnitude and also provides direct
evidence of correlated emission in the form of two correlated
peaks in the output spectra.

From our analysis, it would seem that experiments are,
indeed, feasible. Refractive-index perturbations of the order
of those used in this work, n ~ 0.001, may be obtained by
focusing laser pulses in fused silica or other nonlinear media
and higher values have been observed. According to our
results, this would result in a photon-pair emission rate of
~107% pairs/pulse at = 20 in a 5-mm-long waveguide, i.e.,
~1 photon per second if a MHz-repetition-rate laser is used.
These numbers may be increased by an order of magnitude
or more, e.g., by using fast-light media or higher PDM
amplitudes. The high velocities used here for the perturbation
may be obtained experimentally by sending an extended
(approximately “plane wave”) laser pulse at an angle onto
the host medium that could be, for example, a waveguide
(see Fig. 7). The pulse would intersect the waveguide with
an angle 6 and the Kerr effect would create a PDM only at
the intersection point that travels with speed c/cos@ (if we
approximate the refractive index of air ~1). Therefore, an
incidence angle of ~80°-85° (i.e., close to normal incidence
on the waveguide) would guarantee § ~ 5-20. We note that a
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pump pulse

low-index substrate

FIG. 7. (Color online) Schematical representation of an experi-
mental layout for creating a superluminal refractive-index perturba-
tion in a waveguide.

similar approach has actually been used in previous pioneering
experiments in which a dc field was converted to terahertz
radiation by a superluminal laser pulse excitation of an array
of biased capacitors [29]. In our case, we are exciting a
superluminal PDM in a dielectric medium and correlated
photon pairs would be generated and collected from the two
ends of the waveguide.
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