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Spatial images from temporal data
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Traditional paradigms for imaging rely on the use of a spatial structure, either in the detector (pixels arrays) or in the
illumination (patterned light). Removal of the spatial structure in the detector or illumination, i.e., imaging with just
a single-point sensor, would require solving a very strongly ill-posed inverse retrieval problem that to date has not been
solved. Here, we demonstrate a data-driven approach in which full 3D information is obtained with just a single-point,
single-photon avalanche diode that records the arrival time of photons reflected from a scene that is illuminated with
short pulses of light. Imaging with single-point time-of-flight (temporal) data opens new routes in terms of speed, size,
and functionality. As an example, we show how the training based on an optical time-of-flight camera enables a compact
radio-frequency impulse radio detection and ranging transceiver to provide 3D images.
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1. INTRODUCTION

The most common approach to image formation is obvious and
intuitive: a light source illuminates the scene, and the back-
reflected light is imaged with lenses onto a detector array (a
camera). A second paradigm, single-pixel imaging, relies instead
on the use of a single pixel for light detection, while the structure is
placed in the illumination by spatially scanning the scene in some
form [1–6]. Three-dimensional (3D) imaging can be obtained
with these approaches, gathering depth information via stereovi-
sion, holographic, or time-of-flight (ToF) techniques [7–10]. In
ToF approaches, the depth information is estimated by measuring
the time needed by light to travel from the scene to the sensor [11].
Many recent imaging approaches, ranging from sparse-photon
imaging [12–14] to non-line-of-sight (NLOS) imaging [15–20],
also rely on computational techniques for enhancing imaging
capabilities. Among the various possible computational imaging
algorithms [21], machine learning (ML) [22] and, in particular,
deep learning [23], provides a statistical or data-driven model
for enhanced image retrieval [24]. State-of-the-art deep learning
techniques have been applied in computational imaging problems
such as 3D microscopy [25,26], super-resolution imaging [27,28],
phase recovery [29,30], lensless imaging [31,32], and imaging
through complex media [33–38].

All of these imaging approaches use either a detector array or
scanning/structured illumination to retrieve the transverse spatial

information from the scene. This requirement is clear if we con-
sider the inverse problem that needs to be solved if data is collected
only from a single-point, non-scanning detector with no structure
in the illumination: there are infinite possible scenes that could give
the same measurement on the single-point sensor, thus rendering
the inverse problem very strongly ill-posed.

Here, we introduce a new paradigm for spatial imaging based
on single-point, time-resolving detectors. In our approach, the
scene is flood-illuminated with a pulsed laser, and the return light is
focused and collected with a single-point single-photon avalanche
diode (SPAD) detector, which records only the arrival time of
the return photons from the whole scene in the form of a tempo-
ral histogram. During the measurement, no spatial structure is
imprinted at any stage, either on the detector or the illumination
source. Then, an artificial neural network (ANN) reconstructs the
3D scene from a single temporal histogram. We demonstrate 3D
imaging of different objects, including humans, with a resolution
sufficient to capture scene details and up to a depth of 4 m. We
prove that using the background of the scenes is a key element
to detect, identify, and image moving objects, and we exploit it
for our application. Our approach is a conceptual change with
respect to the common mechanisms for image formation, as spatial
images are obtained from a single temporal histogram. This result
lends itself to cross-modality imaging, whereby training based on
ground-truth from an optical system can be applied to data from
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a completely different platform. As an example, we show that a
single radio-frequency (RF) impulse radio detection and ranging
(RADAR) transducer together with our ML algorithm is enough
to retrieve 3D images.

2. SINGLE-POINT 3D IMAGING APPROACH

Previous work has shown that, in addition to the object–sensor
distance, the 3D profile of objects manifests through a particular
temporal footprint that makes them classifiable even in cluttered
environments [39]. Here, we extend this concept to full imaging
using only photon arrival time from the scene. It is simple to con-
struct a forward model, where all points in the scene that are at
some distance, ri = (xi , y i , zi ), from the detector provide a related

photon arrival time, ti = c−1
|ri | = c−1

√
x 2

i + y 2
i + z2

i (where c
is the speed of light). By recording the number of photons arriving
at different times t , we can build up a temporal histogram that
contains information about the scene in 3D.

However, solving the inverse problem is a much harder task.
Indeed, obtaining the 3D coordinates ri of objects, the reflected
photons of which contribute to a one-dimensional (1D) temporal
histogram (i.e., containing no spatial information in any form),
is an extremely ill-posed problem. This data problem becomes
even harder to solve when one realizes that photons reflected from
objects at coordinates placed within a spherical dome represented
by the equation (c ti )2 = x 2

+ y 2
+ z2 have the exact same arrival

time ti at the detector, and, as a consequence, they will contribute
with equal probability to the same time bin on the histogram.
Therefore, a single temporal histogram is not enough, in principle,
to obtain a unique solution for the inverse problem and to retrieve
meaningful shape or depth information that resembles the actual
scene. This problem arises due to a lack of additional information,
priors, or constraints on the scene (that is usually provided by using
multiple light sources or detectors/pixels). This lack of information
and priors can be accounted for and brought into an image retrieval
process in different ways. For instance, by following the methodol-
ogy of common computational imaging algorithms, it is possible
to have a forward model that generates different scenes compatible
with the experimentally recorded temporal histogram and then use
an iterative algorithm that estimates the degree of compatibility

of these scenes with the data. However, if no prior information of
the types of scenes is provided (e.g., imaging one or more humans
continuously moving in an empty room), the number of solutions
compatible with this approach is infinite, and the algorithm would
hardly converge towards the correct answer. In our work, we take a
different approach, where this additional information is provided
through priors based on data-sets containing the type of images
that we aim to retrieve, and a supervised ML algorithm that is
trained for that purpose.

In more detail, the 3D imaging approach is depicted in Fig. 1
and consists of three main elements: (i) a pulsed light source, (ii)
a single-point time-resolving sensor, and (iii) an image retrieval
algorithm. The scene is flood-illuminated with the pulsed source,
and the resulting back-scattered photons are collected by the sen-
sor. We use a single-point SPAD detector operated together with
time-correlated single-photon counting (TCSPC) electronics to
form a temporal histogram [Fig. 1(b)] from the photons arrival
time to objects placed at different positions within the scene, and
objects with different shapes provide different distributions of
arrival times at the sensor [39].

The histogram, h , measured by the single-point sensor can be
mathematically described as h =F(S), where S = S(r) represents
the distribution of objects within the scene. The problem to solve
is the search for the function F−1 that maps the temporal his-
tograms onto the scene. We adopt a supervised training approach
(see Supplement 1 for details) by collecting a series of temporal
histograms corresponding to different scenes together with the
corresponding ground-truth 3D images collected with a commer-
cial ToF camera. The ANN is then trained to find an approximate
solution for F−1 and is finally used to reconstruct 3D images only
from time-resolved measurements of new scenes that have not
been seen during the training process. We recall that this is one of
the key reasons for using a ML approach: once the algorithm has
been trained (which happens only once), this can be used with
unseen temporal histograms straight away, i.e., no further training
is required. Moreover, the trained algorithm could be implemented
on portable platforms for fast and lightweight applications, as it is
extremely light computationally speaking.

Fig. 1. 3D imaging with single-point time-resolving sensors. Our approach is divided into two steps: (a) a data collection step and (b) the deployment
phase. During step 1, a pulsed laser beam flash-illuminates the scene, and the reflected light is collected with a single-point sensor (in our case, SPAD) that
provides a temporal histogram via time-correlated single-photon counting (TCSPC). In parallel, a time-of-flight (ToF) camera records 3D images from the
scene. The ToF camera operates independently from the SPAD and pulsed laser system. The SPAD temporal histograms and ToF 3D images are used to
train the image retrieval ANN. Step 2 occurs only after the ANN is trained. During this deployment phase, only the pulsed laser source and SPAD are used:
3D images are retrieved from the temporal histograms alone.

https://doi.org/10.6084/m9.figshare.12640457


Research Article Vol. 7, No. 8 / August 2020 / Optica 902

3. NUMERICAL RESULTS

To evaluate the validity of our approach, we first analyzed its per-
formance with numerical simulations. We consider human-like
objects with different poses, moving within a scene of 20 m3,
which is represented as a color-encoded depth image, as shown in
Fig. 2(c). We assume flash illumination of the scene with a pulsed
light source (with a duration that is much shorter than all other
timescales in the problem) and then calculate the photons’ arrival-
time from every point of the scene. Simulating different scenes
allows us to obtain multiple 3D images and temporal histograms
pairs that are used to train the image retrieval algorithm (details
about the structure of the ANN and training parameters can be
found in Supplement 1).

Typical scenes consist of a static background with moving
human figures in different poses, as shown in Supplement 1. After
training the ANN, single temporal histograms are tested to recon-
struct the related 3D scenes. To evaluate the potential performance
in idealized conditions, for these simulations, we assumed that the
time bin width1t = 2.3 ps is also the actual temporal resolution
(impulse response function, IRF) of the full system. The minimum
resolvable transverse feature size or lateral object separation δ that
can be distinguished with our technique depends on both the IRF,
1t , and the distance from the sensor, d :

δ(d , 1t)= c1t

√
2d

c1t
+ 1, (1)

where c is the speed of light. In the depth direction, the spatial
resolving power is determined only by the ToF resolution (as in
standard LiDAR), i.e., δz = c1t . At a distance of 4 m from the
detector, for 1t = 2.3 ps, we can expect a transverse image res-
olution of 7 cm, which will degrade to 77 cm for 1t = 250 ps.
The impact of the latter realistic time response will be shown in
the following experimental results. Figure 2(a) shows one example
of a temporal histogram constructed from the scene in Fig. 2(c).
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Fig. 2. Numerical results showing 3D imaging from a single tem-
poral histogram recorded with a single-point time-resolving detector.
(a) Temporal trace obtained from the scene [shown in (c) as a color-
encoded depth image]. (b) 3D image obtained from our image retrieval
algorithm when fed with the histogram from (a). The color bars describe
the color-encoded depth map.

Figure 2(b) shows the scene reconstructed using the numerically
trained ANN and highlights the relatively precise rendition of both
depth and transverse details in the scene.

4. EXPERIMENTAL RESULTS

A. Optical Pulses

After numerically demonstrating the concept of 3D imaging with
single-point time-resolving detectors, we test its applicability in
an experimental environment. We flood-illuminate the scene
with a pulsed laser source at (550± 25) nm, with pulse width of
τ = 75 ps. Our scenes are formed by a variety of fixed background
objects, up to a depth of 4 m (the maximum distance allowed
by our ToF camera), while different additional objects (people,
large-scale objects) are moving dynamically around the scene.
Although in our experiments we use a ToF camera, we note that
any other 3D imaging system, such as LiDAR, stereoimaging, or
holography devices, could be used for collecting the ground-truth
data for the training process. The ToF camera is synchronized with
a SPAD detector equipped with TCSPC electronics that provide
temporal histograms from the back-reflected light that is collected
from the whole scene with an angular aperture of∼30◦ and an IRF
1t = 250 ps (measured with a small 2 cm mirror in the scene).

In Fig. 3, the first column shows examples of recorded temporal
histograms, the second column shows the images reconstructed
from these temporal histograms, and the last column shows the
ground-truth images obtained with the ToF camera for com-
parison. Full movies with continuous movement of the people
and objects within the scenes, acquired at 10 fps, are shown in
Visualization 1. As can be seen, even with the relatively long IRF of
our system, it is possible to retrieve the full 3D distribution of the
moving people and objects within the scene from the single-point
temporal histograms. Compared to the numerical results, the
larger IRF leads to the loss of some details in the shapes, such as
arms or legs that are not fully recovered.

We can see these limitations, for example, in the reconstruction
of the letter ‘T,’ row (d) of Fig. 3 (with dimensions 39 cm× 51 cm)
and especially in Visualization 1, where the algorithm is able to
detect the object, but struggles to obtain the correct shape. This lat-
eral resolution power [Eq. (1)] would be improved for example to
25 cm with1t = 25 ps and increases with a square-root law with
distance, implying a relatively slow deterioration versus distance
(for example, resolution would be 50 cm at 20 m distance).

Specific shape information is retrieved from all features in the
scene, both dynamic (e.g., moving people) and static (e.g., objects
in the background). This can be seen in Figs. 3(a) and 3(b), where
both temporal histograms have peaks that are placed at similar
positions, yet the reconstructed scenes are different. On the one
hand, in Fig. 3(a), the ANN recognizes the box at the right of
the image (corresponding to peak 2 in the histogram) as a static
background object that was present in all of the training data, while
the person (peak 1) is identified as a dynamic object with a certain
shape given by the peak structure. In contrast, the ANN recognizes
both temporal peaks 1 and 2 in Fig. 3(b) as people moving dynami-
cally through the scene (as these were not constant/static in the
training data).

This example highlights the role of the background, which is
also key in removing ambiguities that would arise in the presence
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Fig. 3. Experimental results showing the performance of our system recovering the 3D image from temporal histograms in different scenarios. The first
column shows temporal histograms recorded with the SPAD sensor and TCSPC electronics [rows (a)–(d)] or with the RADAR transceiver [row (e)], while
the last column represents 3D images measured directly with the ToF camera for comparison to the reconstructed images (second column). The color bars
describe the color-encoded depth map. The white scale bar corresponds to 80 cm at 2 m distance. Full videos are available in the supplementary information
(Visualization 1 and Visualization 2).

of a single isolated object moving in front of a uniform background
(for instance, a single isolated histogram peak could be interpreted
as a person placed either to the left or to the right of the scene—see
Supplement 1 for details).

B. Gigahertz Pulses

We further analyze the impact of the IRF on the image quality
reconstruction by repeating the reconstruction with temporal his-
tograms that are convolved with Gaussian point-spread functions
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with different temporal widths. The results (Supplement 1) show
that although longer IRFs degrade image reconstruction, the shape
and 3D location of people in the scene are still easily recognizable
even when using an IRF of 1 ns (corresponding nominally to a
lateral spatial resolution of ≈ 1.4 m at 4 m distance). This opens
the possibility for cross-modality imaging, understood here in
the context of detecting signals in one modality or domain and
extracting information from a completely different modality. In
particular, our approach offers new perspectives for sensing with
pulsed sources outside the optical domain, which typically have
nanosecond (ns)-scale IRF, providing 3D images with resolutions
typical of those obtained in the optical domain, e.g., with the
ToF camera. To demonstrate this, we replaced the pulsed laser
source, SPAD detector, and other optical elements with an impulse
RADAR transceiver emitting at 7.29 GHz (see Supplement 1 and
Visualization 2). After re-training the ANN using the RADAR
transceiver for the time-series data and the optical ToF camera
for the ground-truth images, we can retrieve a person’s shape and
location in 3D from a single RADAR histogram [see Fig. 3(e)],
thus transforming a ubiquitous RADAR distance sensor into a full
imaging device.

5. DISCUSSION

Although the maximum resolution of the reconstructed images is
limited by the resolution of the 3D sensor used during training,
overall, the quality of the final image is essentially determined
by the temporal resolution of the single-point time-resolving
detector. With state-of-the-art sensors currently heading towards
10 ps or better resolution, there is potential for 3D imaging with
spatial resolution better than 10 cm at distances of 10 m or more.
The precision in the image reconstruction is also determined
by the reconstruction algorithm with improvement possible by
using more advanced algorithms (including non-ML-based ones)
and also fusing the ToF flight data with other sensor data, e.g.,
a standard CCD/CMOS camera. However, using single-point
SPADs has promising potential for high-speed implementations.
After the algorithm is trained (which is performed only once),
the image reconstruction problem has two different time-frames:
(i) the algorithm reconstruction time and (ii) the histogram data
collection time. On the one hand, (i) is easy to be measured with
the computer directly, providing times on the order of 10− 30 µs
for the algorithm used here. On the other hand, to account for (ii),
different factors need to be considered. First, typical time-to-digital
converters (TDCs) run at 10 MHz. Our experiments indicate
that about 1000 photons per temporal histogram are needed to
retrieve a meaningful image, which leads to histogram recording
frame rates of ≈ 10 kHz, which is reduced to 1 kHz or less if we
are in the photon starved regime, and we account for data transfer
to an electronics board. This frame rate could be increased further
if instead of a single pixel, a SPAD array is used as a “super-pixel”
by adding all the outputs into a single histogram, thus collecting
hundreds of photons for each illumination pulse (e.g., with a
32× 32 array). Such devices are commercially available and can
run at 100 kHz, which would therefore define the rate at which we
could collect single temporal histograms These estimates indicate
a clear potential for imaging at 1–100 kHz with no scanning parts
and a retrieval process that can match this rate even when running
with standard software and hardware.

Although the above-discussed advantages of our approach for
imaging in terms of data processing and hardware are important,
the key message in this work is the potential of using temporal data
gathered with just a single pixel for spatial imaging. This approach
broadens the remit of what is traditionally considered to constitute
image information. The same concept is therefore transferable to
any device that is capable of probing a scene with short pulses and
precisely measuring the return “echo,” for example, RADAR and
acoustic distance sensors, indicating a different route for achiev-
ing, for example, full 360◦ situational awareness in autonomous
vehicles and smart devices or wearable devices.

6. CONCLUSIONS

Current state-of-art imaging techniques use either a detector array
or scanning/structured illumination to retrieve the transverse spa-
tial information from the scene, i.e., they relate spatial information
directly to some type of spatial sensing of the scene. In this work,
we have demonstrated an alternative approach to imaging that sup-
presses all forms of spatial sensing and relies only on a data-driven
image retrieval algorithm processing a single time series of data col-
lected from the imaged scene. The experiments were carried out in
scenes where objects were moving in front of a static background.
This makes our approach well suited for applications where the
device needs to be placed at a fixed position during operation,
i.e., with a fixed background. There are multiple situations where
operating in a fixed environment is useful. Examples are surveil-
lance, security in public spaces, etc. These are examples where the
background (e.g., walls of the room, buildings) do not change at all,
and they are also very widespread scenarios. Currently, cities have
spaces that are constantly monitored with CCTV cameras that also
potentially record information from which it is possible to extract
information that breaches data protection policies. Our approach
is therefore highly indicated for cases where one requires human
activity in a fixed area and in a data-compliant way. The approach
shown here would be also valid in a slowly changing environment,
where training could, in principle, be continuously updated.
Indeed, background objects will appear static if they change at
a slower rate (and/or are at a larger distance) with respect to the
dynamic elements of the scene or slower than the acquisition rate
of the sensor. An interesting route for future research is of course to
also investigate methods that account for dynamic backgrounds.

Finally, an interesting extension would be to NLOS imaging,
especially given the latest developments exploiting computational
techniques for image information retrieval from temporal data
[16,40–43] and the availability of public data-sets [44,45].
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