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Abstract: Visualization of the energy density flux gives a unique insight
into the propagation properties of complex ultrashort pulses. This analysis,
formerly relegated to numerical investigations, is here shown to be an
invaluable experimental diagnostic tool. By retrieving the spatio-temporal
amplitude and phase we experimentally obtain the energy density flux
within complex ultrashort pulses generated by filamentation in a nonlinear
Kerr medium.
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The energy flux defined through the Poynting vector is a fundamental quantity for de-
scribing the propagation properties of light. Examples of properties opening the way to ap-
plications range range from particle trapping through phase-gradients [1], light-traps in neg-
ative index waveguides [2], accelerating Airy beams [3] to X-wave propagation [4, 5, 6].
However, due to the intrinsic difficulty in experimentally measuring the energy density flux
within tightly focused and complex pulses, these studies have so far been limited to numeri-
cal investiagtions. Usually defined as �S = �E × �H, the energy flux must be re-written in terms
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Fig. 1. (a) Experimental layout for the 3D tomography measurement: DL - delay line, F -
focusing lens, KS - Kerr sample, T - imaging telescope, BBO - nonlinear BBO crystal for
sum-frequency between laser pulse and 20 fs NOPA gate pulse, IL - imaging lens, CCD
- imaging plane with CCD camera. (b), the experimentally retrieved space-time intensity
profile of the laser filament (40 mm in water). (c) Experimental layout for the angularly
resolved spectrum with (d), the experimentally measured spectrum for the same filament
pulse shown in (b). IF - Fourier lens, S - imaging spectrometer.

of the sole electric field E if an experimental measurement of the flux is to be performed.
An alternative approach to defining an energy flux vector starts from the propagation equa-
tion (see Appendix) for the electric field complex amplitude u = |u|exp(iφ) and leads to an
expression for the radial and temporal energy flux Jr = (1/2ik0)[u∗∂u/∂ r − u∂u∗/∂ r] and
Jt = −(k′′0/2i)[u∗∂u/∂ t − u∂u∗/∂ t], respectively. Substituting u in these relations we find
J ∝ I∇φ , thus indicating the dominant role played by the phase gradient in determining the
energy density flux. An associated phenomenon is the existence of optical forces that arise
from phase gradients and are described by similar equations [1]. The problem of measuring the
energy density or momentum flux is then reduced to that of measuring the pulse phase profile
with sufficient precision to allow reconstruction of the phase gradient along the spatial and tem-
poral coordinates. Furthermore if the laser pulse exhibits space-time coupling, i.e. the temporal
profile depends on the transverse spatial coordinate, then the phase measurement technique
must account for this coupling and should not treat (measure) the spatial and temporal profiles
independently. Such situations occur very frequently or may even become the norm for pulses
of very broad bandwidth as it is sufficient to focus a pulse to observe space-time coupling (even
in the linear regime) [8]. Here we draw attention to the case of ultrashort laser pulse filaments.
High power laser pulses indeed undergo self-focusing in nonlinear Kerr media: the collapse is
eventually arrested by multiphoton absorption or higher order nonlinear processes and a fila-
ment forms, i.e. a tightly localized intensity peak that propagates sub-diffractively over many
diffraction lengths. This peak is surrounded by a larger energy reservoir and it is the interaction
between the two that sustains long range nonlinear propagation and allows one to foresee appli-
cations based on long distance nonlinear interaction or on the transport of high intensities over
long paths [14]. Many of the features of pulse propagation within filaments, such as temporal
compression and sub-diffractive propagation, are still a matter of discussion. Recent numerical
studies have highlighted a clear X-shaped structure in the filament energy density flux which
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Fig. 2. Diagram of the Gerchberg-Saxton algorithm applied to the data in order to retrieve
the pulse spatiotemporal amplitude and phase profile. An initial guess for the phase profile
is superimposed on the measured 3D intensity profile. The spatiotemporal far-field spec-
trum is obtained by a Fourier transform whose amplitude is substituted with the measured
one. An inverse Fourier transform gives a complex valued 3D near field profile in which
the amplitude is replaced by the measurement. This process is iterated until convergence
is obtained. The graph shows the the mean quadratic deviation between the retrieved and
measured near-field intensity profiles over 400 steps.

is tightly connected to the appearance of the filament [5, 6, 7]. Here we extend these studies
providing an experimental characterization of these complex pulses. In order to retrieve the
energy density flux we must measure the pulse amplitude and phase. A number of techniques
have been proposed for measuring the space-time amplitude and phase of complex ultrashort
pulses each with its own advantages and drawbacks [9, 10, 11, 12, 13]. In principle any of these
techniques may be applied to retrieve the filament amplitude and phase profile although we pre-
ferred to a technique, based on a near and far-field intensity measurement and phase retrieval
through the Gerchberg-Saxton iterative error-reduction algorithm, as described below.

The characterization of the laser pulse filament is thus based on two separate measurements:
the first is a 3D tomographic mapping of the pulse space-time intensity profile obtained by
overlapping the pulse under study with a flat-top, 5 mm diameter (FWHM), 720 nm, 20 fs
gate pulse, generated by a commercial noncollinear optical parametric amplifier (NOPA, Light
Conversion Ltd.) on a 10 μm thick Beta Barium Borate (BBO) crystal [15, 16, 17]. The gate
pulse spatial profile is flat over the spatial extension of the laser pulse (less than 500 μm so
that the sum-frequency signal generated by the nonlinear BBO crystal reproduces the pulse
spatial profile within the temporal window of the gate pulse. The thickness of the BBO crystal
is chosen in order to have sufficient bandwidth (∼ 300 nm) to convert the full spectrum (50 nm
wide measured at FWHM) of the laser pulse. Changing the relative delay between the gate and
laser pulse will therefore reconstruct the full space-time intensity profile of the laser pulse. The
layout for this measurement is shown in Fig. 1(a). The filament is generated by focusing (f=50
cm) a 160 fs, 800 nm, 3.3 μJ laser pulse in a water cell whose length may be adjusted. The
output facet of the cell is imaged onto the BBO crystal which in turn is imaged onto the CCD
(16-bit camera, Andor Technologies) plane. The gate and laser pulses overlap on the BBO crys-
tal with a small angle (∼ 1 deg) so that a pinhole, placed after the BBO crystal may select only
the noncollinear sum-frequency signal. In Fig. 1(b) we show an example of the reconstructed
tomographic map of the laser pulse filament generated in 40 mm of water: the complexity of
the pulse, characterized by multiple peaks and surrounding rings, is clear.

The second measurement consists of recording the angularly resolved (θ ,λ ) spectrum [18].
This is obtained by sending the spatial far-field of the filament, i.e. the intensity distribution in
the focal plane of a lens, onto the input slit of an imaging spectrometer - the layout is shown in
Fig. 1(c). The ouput (θ ,λ ) spectrum is then recorded with a CCD camera. Figure 1(d) shows
a laser pulse filament spectrum measured after 40 mm of water, recorded with a color Nikon
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Fig. 3. Experimentally retrieved energy density flux profiles for an 800 nm, 160 fs laser
pulse with a power 11 times the critical power for self-focusing in water. Blue indicates a
negative (opposite to the axis direction), Red indicates a positive (same as the axis direc-
tion) flux. (a), (c), (e) and (g) show the normalized r-t distribution of transverse flux for
the input focused pulse, for the pulse after 0 mm, 10 mm, 20 mm and 40 mm of nonlin-
ear propagation in water, respectively. (b), (d), (f) and (h), for the same conditions, show
the longitudinal fluxes. The grey contour plots show the pulse space-time intensity profile
over 2 decades (0.4 decade spacing between each contour line). In (e), “L”, “T” and “W”
indicate the leading peak, the trailing peak and the central wings, respectively.

digital camera that highlights the colored conical emission, i.e. the extended tails propagating
at off-axis angles. Recovery of the pulse phase profile was obtained using spectra recorded on a
linearized 16-bit CCD camera, in order to avoid saturation in the high intensity regions and dis-
tortions due to the Nikon nonlinear CCD response. We note that the imaging spectrometer has
an input slit which necessarily limits the (θ ,λ ) measurement to a single slice in the transverse
plane: due to the azimuthal symmetry of the laser pulse filament this is sufficient information
to recover the full space-time phase profile.

The problem of recovering the phase profile from intensity Fourier-transform pairs is well
known in the field of spatial wave-front sensing: the phase profile is retrieved by combining
the near and far field intensity measurements through an error-reduction (or Gerchberg-Saxton)
algorithm [19]. Considering that our (r, t) and (θ ,λ ) measurements also form a Fourier trans-
form pair, we simply generalize the error-reduction algorithm to the space-time domain. In
more detail, phase retrieval is obtained via an iterative Gerchberg-Saxton algorithm in which
the complex field is Fourier-transformed back and forth, each time substituting the relative
measured (r, t) or (θ ,λ ) intensity profile (Fig. 2). The algorithm was first tested on a number
of numerically generated test pulses, e.g. tilted pulses with various phase profiles, each time
showing robust behavior and convergence to the correct phase profile. The algorithm was the
run using measured data for a total of 400 iterations with an initial quadratic guess function for
the phase profile. Convergence to similar results was obtained even by widely varying (by more
than a factor 50) the input phase curvature although we finally present the results that effectively
minimized the “error”, i.e. the mean quadratic deviation between the retrieved and measured
near-field intensity profiles. We note that the Gerchberg-Saxton algorithm is afflicted by an am-
biguity in the sign of the retrieved phase, e.g. it cannot discriminate between a focusing or a
defocusing Gaussian beam. This ambiguity can be removed if the sign of the phase is actually

#108291 - $15.00 USD Received 3 Mar 2009; revised 3 Apr 2009; accepted 6 Apr 2009; published 30 Apr 2009

(C) 2009 OSA 11 May 2009 / Vol. 17,  No. 10 / OPTICS EXPRESS  8197



-150            -50                   50                 150

80

40

 0

-40

-80

t (fs)

r (
μ
m

)

 (a)

L T

W

-150            -50                   50                 150

80

40

 0

-40

-80

t (fs)

r (
μ
m

)

 (b)

Fig. 4. Numerically simulated laser filament pulse and transverse flux after 40 mm of wa-
ter. The input power and focusing conditions are chosen to match the experiment. The grey
contour plots show the pulse space-time intensity profile over 4 decades (0.8 decade spac-
ing between each contour line). “L”, “T” and “W” indicate the leading peak, the trailing
peak and the central wings, respectively. The main experimental features are reproduced,
in particular the marked X-shaped flux associated to the main leading intensity peak.

known a priori. This is indeed the case for the input pulse (z = 0 cm) as it is focused into the
medium with a lens and suffers initial linear positive dispersion. The same phase signs were
applied also to the measurements at successive z. The good agreement between the measure-
ments and the numerics at both a qualitative and quantitative level confirm the appropriateness
of this choice.

Once the phase profile is retrieved the space-time energy-density flux, or equivalently the
momentum flux, is retrieved using the formulas given above for Jr and Jt .

As a first example, we take the 3D tomographic measurements described in [16] for the input
focused Gaussian laser pulse at z = 0 mm, i.e. in the absence of any nonlinear Kerr medium and
for z = 10 mm propagation in water. For z = 0 mm, Figs. 3(a) and 3(b) show the normalized
retrieved fluxes along the transverse direction r and along the longitudinal temporal coordinate
t, respectively. The grey curves show the contours of the pulse space-time profile in logarithmic
scale over 2 decades. Blue regions in the graph indicate a negative flux, red indicates a positive
flux. The transverse flux clearly shows an inward flow toward the center of the pulse (r = 0)
as expected for a linearly focusing pulse. The longitudinal flux shows two components, both
flowing outward with respect to the center (t = 0) of the pulse as schematically indicated by
the arrows. This flux is related to linear dispersion that leads to a temporal broadening of the
pulse. Figures 3(c) and 3(d) show the same fluxes, in the reference frame of the input Gaussian
pulse, for z = 10 mm. The input power is 11 times the critical power for self-focusing [20] and
the nonlinear effects on the pulse are clearly visible. The transverse flux shows an inward flow
due to self-focusing in correspondence to the leading region and to the outer regions (|r| ≥ 50
μm) while the opposite outward flux carried by the trailing part and associated with the typical
horn shape of the intensity profile is a clear signature of plasma defocusing arising from self-
generated plasma [14, 21].

Using the same laser and input conditions as above, we performed further measurements
and applied the technique to the fully formed filament (z = 20 mm and 40 mm propagation).
At z = 20 mm propagation [Figs. 3(e), 3(f)] the pulse is split in two and the leading pulse
(indicated with “L” in the figure) shows a marked X-shaped structure in the transverse flux
distribution, i.e. a conical energy flux that is bringing energy from the surrounding reservoir
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into the central intensity peak which is estimated (from the tomography measurements) to have
a width of approximately 10 μm. The trailing pulse (indicated with “T” in the figure) on the
other hand is still clearly affected by plasma defocusing and shows a marked outward flux. Fur-
thermore we note the presence of an off-axis ring centered around t=0 (indicated with “W” in
the figure) that is focusing toward the pulse axis. The conical X-shaped transverse-flux is still
clearly visible after 40 mm propagation, even if the energy has recombined toward the pulse
center. These results strongly support the presence of spontaneously formed nonlinear X-waves
[22, 23, 24] and the interpretation of filamentation in terms of a dynamical interaction (splitting
and refocusing) of nonlinear X-waves [25, 26]. X-waves are a particular class of non-diffractive
and non-dispersive wave-packets that are characterized by a conical energy flux and indeed ex-
hibit an X-shaped energy density flux profile in the near-field [4]. The transverse flux of the
spontaneously formed X-waves in filamentation in condensed [5] and gaseous media [6] has
been investigated numerically with results very similar to our experimental measurements. In
Fig. 4 we show a numerically simulated laser filament intensity with its transverse and longi-
tudinal flux distribution using the same experimental input conditions obtained with a model
described in detail elsewhere [14]. The leading (L) and trailing peak (T) are separated by 200 fs
in both the numerics and the experiments. In Fig. 4(a) the X-shaped flux associated to the lead-
ing peak and the outward flux associated to the trailing peak are clearly visible along with the
inward flux around t=0 (W) in close agreement with the experimental measurement, Fig. 3(e).
Furthermore, the numerical longitudinal flux Fig. 4(b) also shows similar features to the exper-
iment, Fig. 3(f) with opposite flux directions on the leading and trailing peaks.

In conclusion we have experimentally retrieved the energy density flux within ultrashort laser
pulse filaments. The flux shows a clear X-shaped profile that is reproduced also in numerical
simulations and strongly supports the idea of spontaneous X-wave formation within filaments.
The same approach proposed here may be applied to other situations and depending on the
complexity of the pulse, other phase retrieval methods may also be adequate. In particular re-
cent advances in frequency resolved optical techniques [28] and interferometric [29] methods
applied to tightly focused or even to the nano-scale regime give promise of experimentally
measuring the energy density flux in nano-waveguides [30] or scattering and trapping of nano-
metric particles.

Appendix

The energy density flux used was derived starting from the propagation equation for the electric
field complex amplitude u in the slowly varying envelope approximation is

∂u

∂ z
=

i

2k0
∇2
⊥u− i

k′′0
2

∂ 2u

∂ t2 +N(u) (1)

where k0 is the wave-vector and k′′0 is the second order derivative with respect to frequency,
both evaluated at the carrier frequency ω0 and N(u) is a nonlinear term which for high intensity
pulses describes the effects of Kerr nonlinearity, nonlinear absorption, plasma generation etc.
[14]. Multiplying Eq. (1) by the complex conjugate u∗ and summing member by member with
the relative conjugate equation and assuming azimuthal symmetry, one obtains a continuity
equation for the current of the energy density J. Projecting onto the radial coordinate r and the
temporal coordinate t, J may be written as

Jr(r, t) =
1

2ik0

[
u(r, t)∗

∂u(r, t)
∂ r

−u(r, t)
∂u(r, t)∗

∂ r

]
(2)

Jt(r, t) =
k′′0
2i

[
u(r, t)∗

∂u(r, t)
∂ t

−u(r, t)
∂u(r, t)∗

∂ t

]
(3)
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In the Lorenz gauge the electric field is related to the vector potential A, u = −∂A/∂ t. In the
limit in which the vector amplitude varies slowly on the time scale of an oscillation of the car-
rier frequency ω , i.e. E = iωA, Eq. (2) coincides with the expression obtained directly from
the time averaged Poynting vector while Eq. (3) represents its generalization along the tempo-
ral coordinate. We note that these relations coincide with the original equations first derived
by H.S. Green and E.Wolf [31, 32]. Finally, writing u = |u|exp(iφ) so that the pulse intensity
is I = |u|2and substituting for example in Eq. (2) we obtain Jr = −(1/k0)I(r)∇φ(r). Strictly
speaking Eqs. (2) and (3) are valid within the limits of the approximations used to derive Eq. (1),
in particular the paraxial approximation. Future work will be dedicated to the details and im-
plications of these approximations.
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