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Abstract: We numerically investigate the possibility to generate freely
accelerating or decelerating pulses. In particular it is shown that accelera-
tion along the propagation direction z may be obtained by a purely spatial
modulation of an input Gaussian pulse in the form of finite-energy Bessel
pulses with a cone angle that varies along the radial coordinate. We discuss
simple practical implementations of such accelerating Bessel beams.
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1. Introduction

Recently the existence of optical beams that may freely accelerate in the transverse spatial
dimension has been reported [1, 2] and the possibility to observe a similar acceleration in the
temporal dimension of pulses has also been predicted [3, 4] These pulses are called “Airy”
pulses due to the Airy function that describes their shape.

Bessel beams are a particularly interesting class of light beams first investigated in detail
by Durnin et al. [5] and currently at the attention of a number of research areas ranging from
extreme nonlinear optics [6] to particle trapping [7] (see also [8] and references therein). The
ideal Bessel beam will be non-diffractive for all z. However this requires infinite energy so
that practical implementations rely on finite-energy Bessel beams with a spatial apodization
of some kind, usually Gaussian (giving the so-called Bessel-Gauss beam). We may therefore
call the propagation “sub-diffractive” in the sense that the central intensity peak diffracts at
a much slower rate if compared to the diffraction of a Gaussian beam with the same width.
A fundamental property of Bessel beams is the conical distribution of wave-vectors such
that all of the beam wave-vectors form an identical angle, θ , with respect to the propagation
axis. This leads to a superluminal phase velocity vφ (ω0) = c/(n(ω0)cosθ ), where c is the
velocity of light and n(ω0) is the medium refractive index at the carrier frequency ω 0. In the
pulsed regime we should consider also the group velocity along the propagation direction z,
vg. This will depend, among other parameters, on the specific method by which the Bessel
pulse is obtained. For example a Bessel pulse generated by an axicon (conical lens) will
have vg = vG/cosθ (Bessel-X pulse) [9, 10] while a Bessel pulse generated by a hologram
(Pulsed Bessel Beam) [11, 12] will have vg = vG cosθ , where vG = 1/(dk/dω |ω0) is the
Gaussian-pulse group velocity determined by the material first order dispersion evaluated at
ω0. Different dependencies on the Bessel cone angle θ or even negative group velocities may
be obtained by modifying the pulse front tilt [13].

In this paper we report the possibility to access accelerating light pulses by pure spatial
modulation of the pulse shape.We numerically consider the specific case of Bessel-X pulses
and show that decelerating pulses are obtained as the result of spherical aberrations in lenses
while accelerating pulses may be obtained by using a nonlinear axicon and the acceleration
profile along z may be varied by choosing the appropriate axicon profile. Therefore these
pulses exhibit arbitrary acceleration rates whilst maintaining the sub-diffractive nature of the
Bessel beam.

Our numerical investigations are based on ray-tracing, used to describe the propagation
through the optical element that reshapes the input pulse and on a linear non-paraxial spectral
propagator, developed following the indication in [14], in order to reproduce the actual pulse
spatio-temporal profile during propagation after the reshaping optical element. The approach
followed is identical to that described in detail in [17] with the sole difference that homemade
codes where used in the place of the commercial software.
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Fig. 1. (a) Ray-tracing of an annular-shaped input beam through a spherical lens. (b) On-
axis group velocity of the pulse as a function of propagation distance for the propagation
shown in (a). (c) Logarithmic spatio-temporal intensity profile evaluated at 3.2 cm from the
lens output plane. The central wavelength of the pulse is 825 nm.

2. Decelerating Bessel pulses

We first consider the simple and well-known case of a spherical lens [15, 16, 17]. Due to
spherical aberrations outer rays of the input beam will suffer a greater deviation than the
paraxial (close to the optical axis) rays. These rays will focus on the optical axis for smaller
z with a larger angle than the paraxial rays (see Fig. 1(a)) and this will lead to distortion of
the spatio-temporal profile of the propagating pulse. In particular a leading Gaussian pulse
will be formed, followed by a trailing Bessel-X pulse [15, 16, 17]. In the marginal focus
the intensity of the Bessel-X pulse may be significantly larger than the leading Gaussian
component, but will gradually decay and be re-absorbed in the main pulse at the paraxial focus.
This immediately gives us a first example of a decelerating Bessel-X pulse: in the marginal
focus the ray angles are large and vg is largest. As the pulse moves toward the paraxial focus
the angles decrease and the Bessel-X pulse gradually slows down until it reaches the group
velocity vG of the leading Gaussian component. Figure 1(b) shows the numerically evaluated
vg = vG/cosθ of the Bessel-X pulse generated between the marginal and paraxial focii of an
f = 43 mm lens (θ = θ (z) is evaluated by ray-tracing and then substituted into the equation for
the group velocity). Figure 1(c) shows the numerically evaluated spatio-temporal pulse profile
at a distance z = 3.2 cm after the lens when this is illuminated by a ring so as to eliminate
the paraxial rays and thus create an isolated decelerating Bessel-X pulse. Indeed, by changing
the input beam shape, i.e. by using a ring-shaped illumination and by changing the profile
of the ring (e.g. apodization and radius) it is possible to select the illuminated portion of the
propagation axis and therefore the properties, such as the maximum and minimum v g values
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Fig. 2. (a) Ray-tracing for the nonlinear axicon described in the text. (b) Group velocity
of the pulse as a function of propagation distance for the linear acceleration condition
(solid line) and for quadratic positive and negative correction (dashed green and red curve
respectively). (c) Logarithmic spatio-temporal intensity profile evaluated at 1.5 cm from
the axicon tip. The central wavelength of the pulse is 1.25 μm.

and the intensity evolution versus z, of the Bessel-X pulse. On the other hand, by changing the
lens characteristics, e.g. focal length, it is possible to tune the deceleration rate versus z.

3. Acelerating Bessel pulses

We now turn our attention to the case of accelerating pulses. A simple lens as described above
will always lead to a decelerating pulse. However, following the same reasoning applied to the
lens, it is clear that a Bessel pulse characterized by wave-vector angles (with respect to the
optical axis) that increase with propagation distance will lead to an acceleration. Such an ac-
celerating Bessel-X pulse may be obtained for example by modifying the surface profile of a
standard axicon. The axicon redirects the input wave-vectors by bending all of these toward the
optical axis by the same angle. We may then modify the axicon profile by a nonlinear function
so that moving away from the optical axis the rays are bent by a progressively increasing angle,
as shown in the ray-tracing scheme in Fig. 2(a). Depending on the specific nonlinear func-
tion used, different acceleration rates may be obtained. Some examples are shown in Fig. 2(b).
The pulse is propagating in vacuum and, as may be seen, extremely large accelerations may
be obtained taking the pulse from c to ∼4/3c in a few cms. In Fig. 2(c) we consider in detail
the linearly accelerating Bessel-X pulse which is generated by illuminating with a 10 cm ra-
dius (at 1/e) Gaussian pulse, a nonlinear axicon approximated by a ninth-power polynomial,
r = ∑aizi with i = 0...9 and a0 = 1.598102, a1 = −1.128, a2 = 6.05710−3, a3 =−4.52810−4,
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a4 = 1.73510−5, a5 = −3.80410−7, a6 = 4.94910−9, a7 = −3.77410−11, a8 = 1.55710−13,
a9 = −2.68610−16. The spatio-temporal profile is clearly that of a Bessel-X pulse and it main-
tains the same profile over the whole Bessel zone reaching a maximum group velocity of
vg � 3.9× 108 m/s. This is in stark contrast with the Airy pulse that substantially modifies
its profile during propagation. However it is also true that the acceleration described here is
fruit of the peculiar conical flux within the Bessel pulse and therefore requires at least two di-
mensions, i.e. the temporal dimension and at least one transverse spatial dimension, whereas
the Airy pulse is possible in just a single dimension, e.g. in a fiber.

We note that the Bessel peak intensity increases during propagation and its width decreases.
This is a direct consequence of the pulse acceleration: indeed the pulse width defined as the
distance between the first zeros, is given by (2c/ω)× 2.4048/sinθ . So, for example, the ac-
celerating Bessel pulse shown in Fig. 2(c) has an initial cone angle (at the axicon tip) of 8 deg
and a beam peak diameter of 7 μm. The final cone angle at the end of the 5 cm Bessel zone is
40 deg and the peak diameter is 1.5 μm: this Bessel zone is huge if compared to the ∼ 250 μm
Rayleigh range of a Gaussian pulse with the same initial diameter.

Note also that the axicon size is defined by the desired acceleration rate and grows with the
Bessel zone, so that, similar accelerations on a shorter scale may be obtained with smaller non-
linear axicons. As an example the same acceleration described above could be obtained, on a
1 cm Bessel zone, with a ∼ 30 mm radius, ∼ 28 mm thick, nonlinear axicon. For smaller accel-
eration rates also graded index optics [18] could be considered.

We finally note that the outlined acceleration process manifests itself without any violation of
the conservation laws. In fact, as for all accelerating pulses, the acceleration addresses the prop-
agation feature of the intense peak of the pulse only, and not of the pulse as a whole. Indeed, the
peak acceleration results from a progressive modification in the wave-packet spatial-temporal
profile, which occurs along propagation. The fact that different angular portions of the spectrum
construct different peaks at different z explains why the peak acceleration takes place.

4. Conclusions

In conclusion we have shown that accelerating Bessel pulses may be obtained by a purely
spatial modulation of an input Gaussian pulse. These pulses may be interesting for practical
purposes considering (i) the relatively simple generation methods, (ii) the possibility to choose
the specific acceleration rate, (iii) the robustness of the temporal profile, i.e. the acceleration
of the pulse does not come at the expense of a progressive distortion and wash-out of the
intensity peak as in the Airy pulse. Indeed, regarding this last point, the pulse temporal profile
will spread in the same way as a Gaussian pulse due to material dispersion which, depending
on the pulse duration and material, is often negligible. In the case of extremely short pulses or
highly dispersive media, the concepts outlined in this work may possibly be extended also to
the case of non-dispersive X-waves [19] or non-dispersive Bessel pulses [20], thus obtaining a
weakly-localized accelerating light pulse that does not suffer spreading in any of its dimensions.
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