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Abstract

It is shown that sub-diffractive (self-collimating) propagation of ultrashort pulses of narrow light beams is possible in two dimensional
planar photonic crystal slabs (in particular made with air holes in Siz;Ny slab) where the sub-diffractive propagation of monochromatic
beam of visible light has been demonstrated previously both theoretically and numerically. We found that the sub-diffractive propaga-
tions of the pulses of duration of more than 40 fs are indistinguishable from that of monochromatic beams. However, for the pulses with
duration less than 40 fs their propagation peculiarities associated with asymmetric spatiotemporal misshaping, spatial and temporal
broadening come into play. The effects are pronounced for the pulses of duration less than 20 fs. The phenomena are shown for both
TM and TE polarized light by means of numerical integration of 2D Maxwell’s equations with finite-difference time-domain technique.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the diffraction of light beams
becomes strong when the beam diameter approaches the
light wavelength limit [1]. Therefore, the management
and control of light diffraction is an important problem
in developing of micro- and nano-meter scale optoelec-
tronic circuits. Recently, it has been shown [2-19] that
the management of light diffraction can be provided by
making a photonic crystal (PC) structure inside a medium
which light passed through. Propagation of stationary light
beams without substantial spreading in transverse direction
on a distance much longer than the Rayleigh length has
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been demonstrated experimentally [2-10] and investigated
in details theoretically in PCs with steeped [11-15] and har-
monic [16-19] spatial modulation of the refractive index.
Such regimes of non-spreading light propagation have been
called self-collimation or sub-diffractive ones. In particular
it has been shown that the sub-diffractive propagation for
monochromatic waves occurs at a fixed frequency for a
given set of the PC’s parameters called as zero diffraction
point (ZDP) [17,18].

Since, the light pulses could be used for transfer and pro-
cessing the data in the integrated micro-optoelectronic cir-
cuits, there is an interest on the investigation of diffraction
management of pulsed light beams. Promising candidate
for this purpose could be the PCs mentioned above under
the conditions when stationary light beams propagate sub-
diffractively. However, since the pulse contains different spec-
tral components, the diffraction can not vanish for all fre-
quencies simultaneously. Particularly, if the central
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frequency component of a pulse is tuned to the ZDP, then the
lower and the higher frequency components will propagate
with the normal and anomalous diffraction, respectively.
Consequently, the ultrashort and ultranarrow pulses mis-
shape during the propagation in such PCs, and, in overall,
they should diffract more than the corresponding monochro-
matic beam in sub-diffractive PCs under the same conditions.
This phenomenon has been predicted and studied for the first
time in Ref. [19] in PC with harmonic modulation of the
refractive index profile and under paraxial approximation.
Since, the main part of PCs available on the market is made
with steeped profile of refractive index, for instance, with air
holes in homogeneous materials, the previously obtained
results are only strictly applicable for such structures.

Therefore, in this paper we are aimed (i) to provide the-
oretical investigations on the pulsed light beam propaga-
tion in the PCs in which sub-diffractive propagation of
stationary beams takes place, (ii) to show that strong
reduction of the transverse spreading of the pulsed light
beams is possible in such PCs, and (iii) to justify the condi-
tions and extend analytical results for sub-diffractive prop-
agation of pulsed light beams beyond the paraxial
approximation and for PCs with steeped profile of the
refractive index modulation.

For these purposes we simulate by finite-difference time-
domain (FDTD) method the pulse propagation in a planar
two dimensional (2D) PC in which the sub-diffractive light
propagation of monochromatic beams has been observed
previously in experiments for visible light [8]. The main
parameters of the investigated PC and the full sets of Max-
well’s equations for TE and TM polarized light are intro-
duced in Section 2. In Section 3 we give analytical
estimation for characteristic lengths that describe the effect
of different mechanisms on the pulse spreading in consid-
ered 2D planar PCs and compare spreading of TE and
TM polarized pulses in PCs with their spreading in homo-
geneous medium. Because the pulse width and the carrier
frequency of the pulse are the main variable parameters
in the experiments, in Section 4 we investigate how these
parameters affect the light pulse propagation and we show
numerically that strong reduction of pulsed light spreading
in the considered PCs is possible under appropriate condi-
tions for both TE and TM polarizations. We plot typical
spatio-temporal distributions of the radiation in the pulsed
beams, and we calculate the evolution of the width and the
duration of the pulses during the propagation. We also
investigate the dependence of the pulse characteristics on
the central frequency of the radiation. In order to optimize
the design of the samples for future possible experiments,
we vary the propagation constant of the planar waveguide
mode, which corresponds to a change in the thickness of
the sample. In Section 5 we summarize obtained results.

2. Model

We consider a planar (2D) PCs that consists of a wave-
guide slab on the top of which a lattice of air holes is etched.

The refractive indexes of the top and bottom cladding layers
are smaller than that of the core layer in order to obtain the
confinement of the light modes in vertical direction. Previ-
ously, it has been shown [8,11,12] that light propagation in
such planar PCs could be described by considering the effec-
tive refractive index of the PC material, which corresponds
only to a particular propagation mode of the waveguide.
We will follow this direction, i.e. we consider propagation
of pulsed light beams in two spatial dimensions of 2D PCs
with a lattice of holes that takes the same form as in the real
PC, but we consider effective index of refraction for the bulk
material, in which the holes are made, on the basis of calcu-
lation of propagation vector of the guided modes formed in
the real PC. Our waveguide consists of a 250 nm thick SizNy
layer with a top and a bottom layer of SiO,. Previously, it
has been shown that using this SiO,/Si;N,/SiO, waveguide
configuration the sub-diffractive propagation of stationary
light beams is possible near the wavelength 4y = 800 nm
for the following parameters of the PCs: (1) the diameter
of the air holes is 210 nm; and the square lattice constant
is a=320nm; (2) bulk refractive index of SiO,:
n(Si0,,49) = 1.45; (3) bulk refractive index of SizNy:
n(SizNy, o) = 1.95. The sub-diffractive propagation of
TM- and TE-polarized beams takes place in the simulated
sample at Aty = 800 nm and Arg = 790 nm, respectively [8].

Steeped grating of electric susceptibility, which represent
holes, can be written in the following form: &(r) =
e+ Aed",,,0(|(lq, + mq,) — x| — |ro|), where Ag is the differ-
ence in the susceptibilities of the bulk material (¢) and holes
(80 = 1); indexes / and m numerate the position of the holes
in a lattice, rg is the hole radius. We consider a structure
with square symmetry, i.e. |q;| =|q>|, and when the reci-
procal lattice vectors q; and q, are oriented at an angle
o = 45° with respect to the direction of light propagation.
As it has been shown previously in such PCs the sub-dif-
fractive light propagation of stationary beams is possible
along few directions [13]. Two of them are oriented at an
angle o = 45° with respect to the reciprocal lattice vectors
q; and q», and the other two directions are along o = 0°.
We consider the first directions, because, as it was shown
[18] the spreading in the former case is slower than in the
latter one.

Propagation of TM polarized waves (with electric field
vector perpendicular to the plane of wave propagation)
in 2D plane can be described by Maxwell’s equations

e 0 0 o\ [/H
Sl B]=10 o —ala] (1)
D, 2. -0, 0 E,

and for TE polarized waves (with magnetic field vector per-
pendicular to the plane of wave propagation), as described
by Maxwell’s equations

D, 0 0 -2\ [E
Slof=10 o o ||E] (2)
B, —o, o 0 ) \H,
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where E (D,) are the components of electric field (displace-
ment) vector, and H,(B,) are the components of magnetic
field (induction) vector, ¢ = y, p = {x, z} are the indices of
electric and magnetic field components; 9, and 0, denote
the time and space derivatives, respectively. Modulation
of electric susceptibility is accounted by the constitutive
equations:

D, = E,e¢(r), B, =H,u,. (3)

Here we consider propagation of light pulses with cen-
tral wavelengths near the one corresponding to non-diffrac-
tive regime reported previously, i.e. near Arg—
Atm = 4o = 800 nm. First in order to determine the effec-
tive refractive index for 2D FDTD simulations of consid-
ered PC, we have calculated the effective refractive index
of the planar guided modes in the SiO,/Si; N4/SiO, wave-
guide without holes and we have found that it supports a
single TE and a single TM polarized guided modes at
Ao = 800. We have obtained the corresponding values for
the effective refractive index of two guided modes:
nte(Zo) = 1.748 and nrm(4g) = 1.67 for TE and for TM
polarization, respectively. Next we integrated numerically
the 2D problem with FDTD technique by using these val-
ues as the guide, and searched for the refractive index of
the simulated PC material at which the sub-diffractive
propagation takes place under the given 2D geometry of
holes in the PC. We found that the most appropriate values
for matching the experimentally observed sub-diffractive
propagation are ntg(4g) = 1.7 and nrm(4dg) = 1.58 for TE
and for TM polarization, respectively. In the subsequent
2D FDTD simulations we used these values of refractive
index. The values for the effective refractive index of the
guided modes are slightly lower in the numerical simulation
because the analytical values do not account for the filling
factor associated with the holes. Therefore, we simulated
TE/TM pulse propagation in 2D PC assuming that the
PC material has refractive index nre(ly)=1.7/
ntv(4o) = 1.58 and the PC geometry (hole radius and lat-
tice constant) is the same as in the real PC sample. The
numerical simulations have been performed by FDTD
method [20]. The spatial and time grid discretizations were
dx =dz=20nm and df=0.038 fs, respectively. Calcula-
tions were performed on a grid size of which is /;, = 16 pm
in transverse and /; = 70 um in longitudinal direction. The
spatial grid was terminated by the absorptive boundaries
with uniaxial perfectly matched layers (UPML) [20]. For
a given FDTD simulation we fixed the refractive index of
the PC material (as described above) for waves with all fre-
quencies, i.e. the dispersive properties of the PC material
have not been taken into account. We assumed that the
input pulses and beams have Gaussian profile in both
transverse and longitudinal directions. Transverse width
(double transverse waist) of the input pulses was
2w, = 1.8 pm. When temporal duration of pulses 7p is con-
sidered as a control parameter it is varied in the range
[10 fs, 40 fs]. When other parameters are considered as con-
trol ones the temporal pulse duration is fixed at 20 fs.

3. Analytical predictions

It is well known that diffraction length of electromag-
netic waves (light) in homogeneous media is characterized
by the Rayleigh length [1]

(Homogeneous) 2
LRayleigh - neffﬂ:wl/io’ (4)

where w is the half width of the input beam.

Recently, it has been shown that in PCs the diffraction
of stationary light beams can be described by the same
parameter as the Rayleigh length but related to PC struc-
ture. For 2D planar PC with rhombic symmetry (which
in particular cases can be reduced to the square and hexag-
onal types of symmetry) of the PC lattice such parameter
for light propagated in the direction of symmetry axis
can be written as follows:

L = nerow’ / (dda), (5)
where coefficient d5 is the leading order diffraction coeffi-
cient. The coefficient d, can be either positive (which means
the normal diffraction), negative (which means anomalous
diffraction) or equal to zero. The latter case corresponds to
the sub-diffractive propagation of stationary light beams in
PCs. In such a case the characteristic length Lgﬁégh be-
comes equal to infinity and the diffraction of the stationary
light beams should be described by the high order diffrac-
tion coefficients. In particular, under the sub-diffractive re-
gimes along symmetry direction of PCs with rhombic
lattice (with square type of lattice among them) the next
nonzero coefficient is of the fourth order d4. For TM and
TE polarized stationary light beams they have been
obtained in Refs. [17,18]. The diffraction length in such a
case (under sub-diffractive regime) can be written as
follows [17]

Ly = (@ + @)/ (4dado), (6)

where ¢ () = 2n/A () and A (), is the period of refractive
index modulation along (perpendicular) to the direction of
beam propagation.

In Ref. [19] it has been shown that the diffraction of
pulsed light beams in PCs could be described by the two
diffraction—dispersion lengths. The first dispersion length
given by the expression

2.2 2
2mc Ty k;

needoW; ' (41 +4q7)’

Lpc,) = (7)
depends on the initial pulse duration 7p and it is responsible
for the symmetric broadening of the pulse in time. It relates
to the group velocity dispersion of PCs described by the
parameter ;! for TM or TE polarized waves, respectively
(i=TM, TE). k; is the wavenumber for TM or TE polar-
ized waves.

The second characteristic length is a mixed dispersion/
diffraction length

Lecy = w2k ctp/ (negro), (8)
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that depends on the initial pulse duration 7p and on the
beam width w, at the input point. It results in a spatio-tem-
poral broadening and asymmetric (in time) distortion of
the pulse. This dispersion/diffraction length is an excep-
tional characteristic of PCs, since in homogeneous materi-
als diffraction broadening and dispersive spreading is
decoupled one from another.

In the expressions (5)—(8) the parameters are defined as
follows

; 8F? qzai
d(’) — i I _ 1 , a — 1,
? ((1 - 0,,) (g +41) ™

arg = (1 - Q\|/kTE)27 (9.a)
1 QH‘i(4 =30, b b — 1
AR g+ T T
(1 _ qi/k%'li )
(4-30) &)
btg =———"7""4, 9.b
- gy k)’ o
30y, 201
( l = 3 9-
! (1- Qu‘z’) (kTE/qH —1) ©.0)
i (Qﬁ ¥ Qi) ) QH,[ (Qﬁ + qi) ) fi [ 81/( 81)7 ( . )

For 2D planar PCs with harmonic modulation of refrac-
tive index profile these coefficients have been obtained in
Ref. [18] for TM polarized stationary light beams only.
In this paper we generalize those expressions for both
TM and TE polarized stationary light beams in the PCs
with steeped profile of refractive index modulation by
introducing in the parameter F a coefficient f§ that is a coef-
ficient of the Heaviside function decomposition into the
harmonics of refractive index modulation of considered
PCs.

The values for the characteristics lengths in considered
PC with effective refractive indexes ng(lo) = 1.7 and nyy
(Ao) = 1.58 for TM and TE polarized light pulses with time
duration of 7p = 20 fs and pulse waist w, = 0.9 um are pre-
sented in the Table 1. One can see that for both polariza-
tions the diffraction spreading of the pulsed light beams
is defined by the dispersion/diffraction length Lpc,. But
even for such short pulses, this diffraction length is larger
than the Rayleigh length in the homogeneous media.

From the Table 1 it follows that the characteristic
lengths of the pulsed beams in considered PC are larger
for TE polarization than that for the TM case. Therefore,
the TE polarized pulsed beams spread faster than that of
the TM polarized ones.

Next we check the analytical predictions (7)—(9) by
FDTD integration of 1,2. The numerical test is most spec-

Table 1
Characteristic Lengths of propagated light beams

Light Polarization L;ﬁﬁ‘;{‘;‘ﬁe”“”” Lpc,1 Lpc,
™ 6.257 2447, 4770
TE 6.75 5020 1729

tacular for extremely narrow beams (several um), with,
respectively short Rayleigh lengths (tens of pum). This is
the most critical parameter range, therefore the analytical
results (expressions (7)—(9)) as passing this range, should
hold in the less parameter range of larger widths and,
respectively longer propagation distances.

4. Numerical results

We calculated first the photonic band structure (Fig. 1)
and the iso-frequency curves (Fig. 2) of the considered PC.
The ZDP (straight segments of iso-frequency curves) in the
first band occurs at normalized frequency of 0.40 (in units
of a/X) (see Fig. 2) which corresponds to the wavelength
800 nm. The considered PC has no complete photonic band
gaps (PBG). In the I'M direction, that is direction of sub-
diffractive light propagation, there are pseudo-gaps
between the frequencies of 0.434 and 0.455 (wavelength
of 737.3nm and 703.3nm) for TE polarization (see
Fig. 1a) and between frequencies of 0.445 and 0.474 (wave-
length of 719 nm and 669.4 nm) for TM polarization (see
Fig. 1b). Therefore, light beams with central wavelength
of 19 =800nm are just below (in frequency) the band
gap and therefore, they can propagate in the considered
PC. Numerically we see the effects of the band gap for
slightly lower region of wavelengths [see Fig. 6 (right col-
umn)] with respect to that obtained analytically.

Next we check numerically by FDTD integration of
Eqgs. (1) and (2) with Gaussian profile of the input pulse
that sub-diffractive regimes take place close to the analyti-
cally defined wavelength. For this purpose transverse diver-
gence of the pulses was analyzed by changing the light
wavelength near 1o =800nm with other parameters of
the PCs to be fixed. Profiles of the TE polarized pulses at
propagation distance of 60 um are presented in Fig. 3 at
three different values of the central wavelength of the input
pulse. We have found that by changing the central wave-
length of the input pulse, the pulse propagation from the
anomalous diffraction (see Fig. 3a—c) becomes sub-diffrac-
tive (see Fig. 3d-f) and then it becomes the normal one
(see Fig. 3g—i). This figure also shows the changes in the
temporal and transverse profile of the propagated pulses
under changes of diffraction from anomalous and normal
one through the sub-diffractive propagation. The same
results (not presented here) have been obtained for the case
of TM polarization.

Under sub-diffraction regimes the shape evolution of the
TM- and TE polarized pulses at different propagation dis-
tances in the PC structure is presented in Figs. 4 and 5,
respectively. In general we obtain an anticipated result that
a pulse with initially Gaussian shape (both in transverse
and longitudinal direction) distorts during the propagation
through the PCs, and, in overall, it is broaden both in
transverse and longitudinal direction. The distortion gener-
ally leads to the development of triangular shapes of the
pulses (see Figs. 4 and 5). The distortion is hardly visible
for pulse duration of 40 fs, but clearly visible for pulses
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Fig. 1. (Color online) Band structure of 2D PC with square lattice of air holes with a pitch of @ = 320 nm and a hole diameter of d = 210 nm for TM (left)
and TE (right) field polarization.
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Fig. 2. (Color online) Iso-frequency curves of the first TM-like (left figure) and TE-like (right figure) band of the PC structure of Fig. 1.
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Fig. 3. (Color online) Spatial distribution of the electric field intensity (a, d, g), longitudinal (b, e, h) and transverse (c, f, i) profiles of TE polarized pulse at
propagation distance L = 60um. The central wavelength of the input Gaussian pulses are 4 = 700 nm (a—c), A= 790 nm (d-f) and A = 900 nm (g-i). The
parameters are as follows: central wavelength of pulse 4o = 800 nm; effective index of refraction nrg(4o) = 1.70; initial transverse width of the input
Gaussian pulses is 2w, = 1.8 um. Input pulse duration 7p = 20 fs. Dashed white lines in figures indicate spreading of pulse in homogeneous medium.
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Fig. 4. (Color online) Spatial distribution of the electric field intensity and
evolution of the transverse width at different propagation distances (a and
d), longitudinal (b and e) and transverse (c and f) profiles of TM polarized
pulse at propagation distance L; =60 um. Dashed (white) and solid
(yellow) lines in figures indicate spreading of pulse in homogeneous
medium and in considered PCs. The parameters are as follows: central
wavelength of pulse 4o=800nm; effective index of refraction
ntm(4o) = 1.58; initial transverse width of the input Gaussian pulses is
2w, = 1.8 pum. Input pulse duration tp = 10 fs (a) and 7p =40 fs (b).

with duration less than 20 fs. It should be mentioned that
the same form of the pulses has been reported previously
in Ref. [19] under paraxial and slowly varying envelope
approximations for TM polarized light in PCs with har-
monic modulation of refractive index.

Moreover, from the plots presented in Figs. 4 and 5 one
can also conclude that pulses of TE polarization diverge
faster than TM polarized pulses, which stays in agreement
with analytical predictions presented in the Table 1.

FDTD calculations have been performed for different
temporal durations of the input Gaussian pulse. The results
are summarized in Fig. 6a and b for both TM- and TE-
polarized pulses. With increasing the temporal pulse dura-
tion the transverse pulse spreading decreases, i.e. the longer
the pulse the slower its spreading in PCs. When the tempo-
ral duration of the input pulse approaches few optical cir-
cles, the spreading of the pulse in transverse direction
becomes the same or even stronger than that in the homo-
geneous medium. This confirms analytical results presented
in the previous section.

We have also investigated the dependence of the charac-
teristics of the input Gaussian pulse with time duration of
20 fs on the effective refractive index of the waveguide
modes as calculated after propagation distance of
Ly = 60 pm. The results for TM- and TE-polarized pulses
are summarized in Fig. 6¢c and d and shown by closed cir-
cles and open rhombuses, respectively. One can conclude
that the PC structure considered in this paper is optimum
one for TM polarized pulses at the wavelength
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1] 20 40 60
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Fig. 5. (Color online) The same as in Fig. 4 but for TE polarized pulse.
The parameters are the same as in Fig. 4 but with the effective index of
refraction ntg(4p) = 1.70.
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Fig. 6. (Color online) Dependence of pulse characteristics on the temporal
duration (left column) and on effective refractive index of the guided
modes (right column) for the input Gaussian pulse of TM (closed circles)
and TE (open rhombuses) polarization. Pulse characteristics are calculated
at propagation distance L= 60 um. To obtain the data for the left
column the effective refractive index of the guided modes is fixed at
ntm = 1.58 for TM polarization and ntg = 1.70 for TE polarization. For
the right column the time duration of the input pulse is set to 7p = 20 fs.
The other parameters of the input pulse and of the PC are the same as in
Fig. 4 for TM polarization and as in Fig. 5 for TE polarization. The
central frequency of the pulses is 1o = 800 nm. The natural dispersion of
the material SizN4 was neglected.

Ao =800 nm. But for TE polarization in order to decrease
further the pulse spreading, the effective refractive index
should be slightly increased.

In order to explore the persistence of sub-diffractive
pulse propagation in large range of frequencies we investi-
gated the dependence of the characteristics of the TE polar-
ized pulse (with initial Gaussian profile and time duration
of 20 fs) at propagation distance of L = 60 pm on the cen-
tral wavelength of the pulse. The results are plotted in
Fig. 7. The data in this figure have been obtained for the
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Fig. 7. Dependence of the pulse characteristics at propagation distance
L =60 um on the central wavelength of the input Gaussian pulse of TE
polarization. The parameters are: ntg=1.70, tp=20fs. The other
parameters of the input pulse and of the PC are the same as in Fig. 5.
Notation “E[kV/m]” means the maximum amplitude of the pulse envelope
at considered propagation distance. The peak power of initial pulse in all
simulations was 1 W, which corresponds to initial energy of 5 fJ for pulses
with temporal duration of 20 fs.

PCs with effective refractive index for the guided TE modes
as ntg(4p) = 1.70. From this figure one can see that non-
diffractive pulse propagation corresponds to the optimum
value of the output pulse energy. Although the pulse width
at propagation distance of L = 60 pm could be smaller at
central pulse wavelengths A < /g, where the diffraction is
anomalous one, but for this range of wavelength the losses
of pulse energy during propagation is higher than for
pulses propagated sub-diffractively at 1,. Moreover, the
transverse width of the pulses significantly increases at
smaller wavelength because of the effects of the band gap,
as well as for the pulses under normal diffraction condition,
i.e. for pulses with central wavelength larger than that of
the sub-diffractive regime. The same behavior (not shown
in the Fig. 7) has been observed for the TM polarized
pulses.

5. Conclusions

We conclude that the specific phenomena of sub-diffrac-
tive propagation of pulsed beams (PC induced spatial and
temporal broadening, asymmetric spatiotemporal misshap-
ing) as predicted theoretically in [19] can be observed on
the existing samples [8], or on ones similar to those
reported in Ref. [8], with steeped spatial profile of refrac-
tive index. The spatiotemporal broadening can be observed
by recording full spatio-temporal pulse structure, however
as well as by measuring the integral characteristics of the
pulse: i.e. the integral width as obtained by integrating
the intensity along the pulse, and the integral length, as
obtained by integrating the intensity across the pulse. The

pulses as short as at least 40 fs are needed for the observa-
tion of the discussed effects, and the effects are strongly
pronounced for the pulse durations less than 20 fs. There-
fore, it has been theoretically shown for transfer and pro-
cessing the data in the integrated micro and nanometer
optoelectronic circuits, the sub-diffractive propagation
regimes of light pulses with time duration larger than
20 fs can be feasible.
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