
The ability to image objects outside the 
direct line of sight of a camera would enable 
applications in robotic vision, remote 
sensing, medical imaging, autonomous 
driving and many other domains. For 
example, the ability to see hidden obstacles 
could enable autonomous vehicles to 
avoid collisions, drive more efficiently and 
plan driving actions further in advance. 
Present-​day 3D imaging systems commonly 
used in automotive sensing, such as light 
detection and ranging (LiDAR), measure the 
time it takes a light pulse to travel along a 
direct path from a source to a visible object 
and back to a sensor. Non-​line-​of-​sight 
(NLOS) imaging goes one step further by 
analysing light scattered from multiple 
surfaces along indirect paths, with the 
goal of revealing the 3D shape and visual 
appearance of objects outside the direct line 
of sight1,2 (Fig. 1).

NLOS imaging poses several challenges. 
One challenge is that only a few of the many 
recorded photons carry the information 
necessary to estimate hidden objects. 
Whereas the photon count of light directly 
reflected from a single scattering point falls 
off with a factor proportional to the inverse 
of the square distance, the signal strength of 
light scattered from multiple surfaces 
decreases several orders of magnitude faster. 
Robustly detecting and time-​stamping 
the few indirectly scattered photons in the 
presence of the much brighter signal 

continued effort in both theory and 
experimental systems is necessary to make 
the idea of seeing around corners practical 
‘in the wild’.

Time-​resolved imaging systems 
that use pulsed light sources along with 
single-​photon detectors are some of the most 
promising candidates for practical solutions 
in NLOS imaging. The measurement process 
of time-​resolved NLOS imaging systems  
can be understood from an example scene  
in which a pulsed laser with a pulse width in,  
for example, the range 100 fs to 100 ps, 
illuminates a wall that acts as a relay surface 
at one point (Fig. 1a). The light reaching 
the wall subsequently scatters into the 
hidden region where it re-​scatters off any 
hidden objects before returning to the 
wall where the time-​resolved indirect light 
transport is measured. Individual areas 
on the object scatter back spherical waves, 
which upon intersecting the wall give rise 
to ellipsoids that expand outwards in time 
(shown schematically in Fig. 1b). It is these 
time-​varying ellipsoids that contain all 
the information required to reconstruct 
a full 3D image of the hidden scene. The 
key requirement for time-​resolved NLOS 
approaches is the temporal resolution of 
the detector, which must be high enough 
to freeze light in motion14 (Fig. 1c). Light 
travels ~3 cm in 100  ps, which determines 
the desired temporal resolution of the 
imaging system, because this dictates the 
achievable transverse and axial resolution of 
reconstructed 3D images.

In this Perspective, we discuss the 
emerging field of NLOS imaging and aim 
at making it accessible to the reader by 
categorizing existing approaches by the 
types of measurement systems they use 
and their algorithmic approaches. We first 
discuss technologies that enable imaging 
at the speed of light: that is, detectors with 
femtosecond or picosecond accuracy. We 
then discuss time-​resolved NLOS imaging 
approaches that build on these technologies. 
Finally, we overview alternative methods for 
NLOS imaging and discuss possible future 
directions of the field.

Imaging at the speed of light
The concept of freezing light in motion, 
sometimes referred to as ‘light-​in-​flight’ 
or ‘transient’ imaging, is not specific to 

returning directly from the visible scene 
requires single-​photon-​sensitive detectors 
with a high dynamic range or with gating 
capabilities. A second challenge is that the 
inverse problem of estimating 3D shape 
and appearance of hidden objects from 
intensity measurements alone is ill-​posed. 
Solving the NLOS problem robustly 
requires advanced imaging systems capable 
of picosecond-​accurate time-​resolved 
measurement, mathematical priors on the 
imaged scenes, or other unconventional 
approaches. A third challenge is that the 
inverse problems associated with NLOS 
imaging are extremely large. Developing 
efficient algorithms to compute solutions 
in reasonable times and with memory 
resources available on a single computer 
is crucial to make this emerging imaging 
modality practical.

Over the past 8 years, various approaches 
addressing the NLOS problem have been 
proposed. Some of these focus on advanced 
measurement systems, using femtosecond 
and picosecond time-​resolved detectors2–5, 
interferometry6,7, acoustic systems8, passive 
imaging systems9–11 or thermal imaging12,13. 
Others explore models of light transport 
that make certain assumptions on the 
reflectance or other properties of the hidden 
scenes. At the convergence of physics, signal 
processing, optics and electronics, NLOS 
imaging is an interdisciplinary challenge 
that has seen much progress. Nevertheless, 
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NLOS imaging14. Several techniques for 
light-​in-​flight imaging have been proposed, 
starting in the 1960s when nonlinear optical 
gating techniques were first used to create 
an ultrafast shutter. Doing so extended the 
basic concept of the mechanical shutter 
used in many high-​speed cameras to that 
of a shutter that is activated by light itself. 
Another ingenious approach that effectively 
paved the way for true light-​in-​flight 
imaging was developed in the 1970s and 
relies on standard holographic techniques15, 
modified so that the reference field is a laser 
pulse that is spatially extended and hits the 
photographic plate at an angle16–19. The result 
is a hologram in which different transverse 
locations on the exposed photographic 
plate correspond to different times in the 
scene, owing to the different arrival times 
of the tilted reference pulse. Viewing the 
photographic plate at different lateral 
positions provides an image at different times 
with resolutions of the order of picoseconds 
or even less. A related technique that also 
relies on interference of the light reflected 
from a scene or object with a reference 
field is based on a generalization of optical 
coherence tomography. Reconstructions 
of transient light scenes with very high 
spatial resolution (tens of micrometres) with 
15 trillion frames per second are obtained 
through detection of interference fringes  
as the interferometer delay is varied20. 
Despite the success of these and related 
approaches, their application has been 
limited to scenes that are relatively simple.

Transient imaging using time-​of-​flight 
cameras provides a 3D image of a scene that 
can also be applied to NLOS21–23 and offers 
the distinct advantage of being low budget, 
with commercial time-​of-​flight cameras 
costing around US$100. These cameras 
illuminate the scene with a sinusoidally 

modulated (typically 10–100 MHz or higher) 
light beam. The return signal is demodulated 
against a reference sine wave from which 
a phase delay is extracted that is directly 
related to the time of flight and hence to 
the propagation distance within the scene 
(see refs14,24 for an overview).

Higher temporal resolution and better 
light sensitivity, both key parameters for 
NLOS imaging, can be obtained with 
more complex and expensive cameras. For 
example, full 3D NLOS imaging was first 
demonstrated with a streak camera, which 
enabled precise reconstruction of a small 
mannequin2 (Fig. 2). These cameras rely on 
a photocathode to convert the incoming 
photons into electrons. The electrons can 
then be ‘streaked’ by a time-​varying electric 
field, thereby mapping time onto transverse 
position. The streaked electrons are detected 
on a standard charge-​coupled device (CCD) 
camera after reconversion back into photons 
on a phosphor screen. The use of one spatial 
dimension for the temporal streaking 
implies that these cameras can only see 
one line of the scene at a time, a limitation 
that can be offset for NLOS imaging by 
scanning the illumination laser spot2,25. 
Techniques have been implemented that 
make it possible to fully open the input slit 
and, by computational fusion with data from 
a CCD, obtain a full 2D image without any 
need for scanning26–28. Interestingly, these 
full-​imaging approaches have not yet been 
applied to NLOS imaging.

An alternative approach to transient 
imaging is based on the use of intensified 
CCD cameras (iCCD). iCCDs rely on a 
microchannel plate that is electronically 
gated so that electrons generated by an input 
photocathode are amplified only for a short 
gate time before being reconverted back to 
light on a phosphor screen and detected on 

a CCD or complementary metal–oxide–
semiconductor (CMOS) camera. Typical gate 
times are of the order of nanoseconds but 
can be as short as 100 ps, or even less. Like 
all of the imaging techniques reviewed here, 
iCCDs can also be used for NLOS imaging29.

These and later techniques applied 
to light-​in-​flight imaging have sufficient 
precision to observe distortions in the 
final video due to the finite speed of light, 
such as apparently inverted motion of 
refracted waves from a bottle or apparent 
superluminal motion of light pulses30,31. 
A 100-​ps-​gate iCCD has been used to 
record the apparent time reversal of events 
occurring during light propagation: the 
intersection of a plane wave and a wall 
travels at speed c/sinθ (θ is the intersection 
angle between the plane wave and the wall) 
and is therefore always superluminal. The 
transient imaging of the scattering of light 
from this intersection plane on the wall 
reveals an apparent motion in the direction 
opposite to that actually followed by the 
light pulse32, in much the same way that a 
piece of music played by a speaker moving 
faster than the speed of sound is heard 
backwards33.

Moving beyond the first 3D NLOS 
imaging based on streak cameras2, 
work ensued to improve on some of 
the limitations encountered in these 
measurements that required several hours 
of data acquisition. There was particular 
emphasis on improving acquisition speed 
(with the goal of video frame-​rate imaging), 
light sensitivity (aiming to extend the 
observation area to entire rooms and 
observe human-​sized objects), portability 
(for deploying the technology in the real 
world) and cost (ideally, there would be 
a technology that does all the above with 
similar costs to a time-​of-​flight camera).
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Fig. 1 | Layout of time-resolved non-line-of-sight imaging. a | A visible 
wall is illuminated with a pulsed laser source. Light scattered from  
this wall extends into the obscured region and indirectly illuminates 
hidden objects, which in turn scatter the light back to the wall where  
it is recorded by a time-​resolved detector, typically a single-​photon 
avalanche diode (SPAD) sensor. b | Schematic of the waves scattered 

from the hidden object on the observation wall when ‘frozen’ at a given 
time. The ellipsoids observed on the wall are the intersection with the 
wall of spherical scattered waves from the object. c | Schematic of  
the temporal trace of photon counts observed at a given pixel on the 
wall. The peaks correspond to the scattered spherical waves expanding  
outwards with time.



Single-​photon avalanche diodes (SPADs) 
are semiconductor structures similar to a 
photodiode but with a large bias voltage, 
which results in carrier multiplication: 
the absorption of a single photon causes 
an avalanche breakdown, leading to a 
large current signal that can be detected 
and processed by external electronics. 
Time-​to-​digital converters measure 
the time between the emission of an 
illumination pulse and the detection of an 
associated returned photon on the SPAD. 
A time-​correlated single-​photon counter 
is then used to form a histogram of photon 
arrival times34. SPADs achieve single-​photon 
sensitivity with photon detection efficiencies 
up to 40% and exceptionally low dark count 
rates of 1–10 photons per second in the 
visible spectrum. After the detection of a 
photon, the detector is blind for a hold-​off 
period (dead time) of tens to hundreds of 
nanoseconds, thus limiting the achievable 
maximum count rate. The histogram 
of photon arrival times gives a precise 
measurement of the light pulse temporal 
profile, as long as the measurement is 
performed in a photon-​sparse regime — 
that is, a regime in which the likelihood of 
more than one photon hitting the detector 
during the dead time (referred to as pile-​up) 
is substantially less than one. Accounting 
for the SPAD dead time, working in the 
photon-​sparse regime provides a maximum 
allowed count rate, avoiding photon pile-​up 
distortion effects, of the order of 1–10 MHz.

SPAD detectors are available in both 
single-​pixel and arrayed (that is, camera) 
format, at both visible35–46 and infrared 
wavelengths47–49. SPAD cameras have been 
used for light-​in-​flight imaging, for which 
the single-​photon sensitivity enabled the 
camera to capture a light pulse propagating 
in free space, with photons collected on 
the camera originating from Rayleigh 
scattering in air, as opposed to scattering 
from a surface or enhanced scattering in a 
diffusive medium50 (Fig. 3). The 32 × 32 pixel 
SPAD camera had a temporal resolution of 
about 50 ps, corresponding to 200 million 
frames per second. Although not as fast 
as some of the techniques discussed above 
that can attain more than a trillion frames 
per second, this frame rate is still sufficient 
to freeze light in motion with a blur of 
only 1.5 cm. This minor loss of temporal 
resolution comes with several benefits. The 
cameras are compact, are straightforward 
to use (the camera is based on standard 
CMOS technology, is commercially available 
and is small enough to be integrated into 
a smartphone), have high data acquisition 
rates (NLOS data acquisition has been 

demonstrated with sub-​second timescales)51 
and, with interference filters at the specific 
laser illumination wavelength, can also 
be deployed outdoors and in daylight 
conditions3,52. Video frame-​rate acquisition 
of transient images using SPADs has been 
achieved53, as well as in more standard 
LiDAR configurations deployed outdoors 
over kilometre distances54.

The first application of SPAD array 
sensors to NLOS imaging was in a simpler 
configuration in which only the position 
of the target was assessed, rather than its 
full 3D shape. This simplification allowed 
acquisition and processing times of the order 
of 1 second for a moving target, both in a 
small-​scale laboratory set-​up55 and also for 
detecting people behind a corner on larger 
scales (more than 50 m distance from the 
detector)52. Single-​pixel gated SPADs56 and 
line arrays57 with a scanning laser spot have 
also been used to acquire full 3D scenes 
and are currently some of the preferred 
approaches for NLOS imaging, with most 
set-​ups over the past few years using SPADs 
either in single pixel or array format.

The temporal resolution actually 
required from the detector depends on 
factors that include the illumination pulse 
length and the task at hand. For example, 
for transient imaging, such as capturing 
a light pulse in flight, there is no need to 
use a detector with temporal resolution 
shorter than the pulse length. For 100-ps or 
longer pulses, this can readily be achieved 
with the techniques described above. For 
femtosecond pulses, such as those available 
from standard femtosecond oscillators, the 
current resolution of detectors, limited to 10 
or more picoseconds, will unavoidably result 
in temporal blur of the pulse that will be of 
order 0.3–1 cm, compared with the 30 μm of 
a 100-​fs pulse. However, when considering 
NLOS imaging, the detector’s temporal 

resolution directly affects both transverse 
and depth resolution of the 3D image 
reconstruction, as discussed below.

At present, most SPAD arrays are 
developed for LiDAR imaging. Looking 
to the future, NLOS applications require 
improvements in temporal resolutions, 
better fill factors, the ability to gate out 
direct light from the relay surface, and a 
more flexible way to read out photon time 
stamps from those SPAD pixels that see a 
photon. There is therefore a need for SPAD 
arrays specifically designed with NLOS 
applications in mind.

Time-​of-​flight NLOS imaging
Image formation model
A time-​resolved detector, such as a SPAD, 
measures the incident photon flux as a 
function of time, relative to an emitted 
light pulse. The detector is therefore used 
to record the temporal impulse response 
of a scene, including direct and global 
illumination, at sampling positions x′,y' 
on a visible surface (Fig. 1), resulting in a 
3D space–time volume that is referred to 
as the transient image, τ. As discussed in 
the previous section, a transient image 
contains both directly reflected photons 
and photons that travel along indirect light 
paths. The direct illumination (that is, light 
emitted by the source and scattered back 
to the detector from an object) contains all 
information necessary to recover the shape 
and reflectance of visible parts of the scene. 
Recovering such information is commonly 
done for 3D imaging and LiDAR. For 
NLOS imaging, the direct light is typically 
not considered because it does not contain 
useful information on the hidden scene. It 
can be readily removed from measurements, 
for example by using the fact that it arrives 
earlier than multiple-​surface reflected 
photons, and can therefore be gated out.
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Fig. 2 | First experimental demonstration of ‘looking around corners’. A mannequin behind a 
corner (panel a) is recovered from time-​resolved measurements using unfiltered (panel b) and filtered 
(panel c) back-​projection algorithms. Adapted from ref.2, Springer Nature Limited.



The image formation model for the 
time-​resolved indirect light transport of 
a confocal NLOS system3 (that is, one in 
which both the laser illumination and 
the subsequent detection are at the same 
point x′,y' on the visible surface) can be 
formulated as

′ ′ ∭ ′ ′

′ ′( )
(1)

τ x y t
r

ρ x y z g x y x y z

δ x x y y z tc x y z
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where ρ is the reflectance of a point  
in the hidden scene and the Dirac 
delta function δ relates the time of 
flight t to the distance function 

′ ′r x x y y z tc= ( − ) + ( − ) + = /22 2 2 . Here, 
c is the speed of light and x,y,z are the spatial 
coordinates of the hidden volume. For 
convenience, we assume that the sampling 
locations x',y' are located on the plane z = 0 
and that the laser pulse is infinitesimally 
short, and we only consider indirect light 
transport that bounced precisely three times 
after emission by a light source and before 
being detected: off a visible surface within 
the line of sight, then off a hidden surface 
outside the line of sight, and finally, once 
more off the visible surface. The function 
g absorbs miscellaneous time-​independent 
attenuation effects that depend on the 
hidden surface normals, reflectance 
properties of the hidden scene, visibility of a 
hidden point from some sampling point x',y' 
and several other factors. Each measurement 

in the confocal configuration integrates 
over spherical surfaces in the hidden scene. 
More general non-​confocal configurations 
are also common, for which the detector 
samples the time-​resolved indirect light 
transport at one point on the wall while the 
laser directly illuminates a different point 
on the visible surface2,4. The laser point or 
the detection point can then be scanned 
independently from each other. In this 
more general configuration, measurements 
integrate along elliptical surfaces. Moreover, 
higher-​order bounces of indirect light 
transport could also be considered to 
model indirect reflections of light within 
the hidden scene, although these become 
increasingly difficult to measure.

This image formation model is at the core 
of most NLOS imaging approaches. The 
effects modelled by g make this a nonlinear 
image formation model. Several approaches 
work with a linearized approximation of Eq. 1,  
for which g = 1. This linear approximation 
is easier to invert than the nonlinear model, 
but it makes several additional assumptions 
about the light transport in the hidden 
scene, such as that light scatters isotropically 
and no occlusions occur between different 
scene parts outside the line of sight. 
Indeed, line-​of-​sight imaging problems 
are made nonlinear in a similar fashion if 
surface normals, bidirectional reflectance 
distribution functions and occlusions are 
included in the model. This is why, typically, 
line-​of-​sight imaging systems also operate 

with linearized transport models. Various 
approaches to solving both the linearized 
and nonlinear NLOS problem are discussed 
below. The linearized problem reduces to 
approximating or solving the large linear 
equation system τ = Aρ, where τ represents 
the discretized transient measurements, 
ρ are the unknown reflectance values of 
the hidden scene albedo, and A is a matrix 
describing the indirect time-​resolved light 
transport.

Inverse methods
Heuristic solutions. Heuristic solutions for 
estimating the shape and reflectance of the 
hidden volume are popular. One of the most 
intuitive of these approaches is to relate 
the measured times of the first-​returning 
indirect photons to the convex hull of the 
hidden object or scene58. Alternatively, 
simple parametric planar models can be 
fitted to represent the hidden scene59. 
Another area still in its infancy is the use 
of active capture methods, which shape 
illumination and detection to optimize 
capture based on the anticipated content of 
the scene. Spatial refocusing after the first 
scattering surface can be controlled using 
spatial light modulators, and the focused 
spot can be scanned across the scene60. 
Temporal focusing uses an illumination 
pulse that is shaped in space and time to 
create an illumination pulse at an area 
in the hidden scene61. These techniques 
can improve the signal-​to-​noise ratio and 
resolution for the obtained reconstruction.

Back-​projection methods. Back-​projection 
methods are some of the most popular 
methods for NLOS image reconstruction 
from transient measurements (Fig. 4a). They 
approximate the hidden volume (Fig. 4b) as 
ATτ and optionally apply a filtering or other 
post-​processing step to this result (Figs 2,4c). 
Similar strategies are standard practice for 
solving large-​scale inverse problems, for 
example in medical imaging. Indeed, the 
inverse problem of confocal NLOS scanning 
approaches is closely related to the spherical 
Radon transform62, whereas the general non-​
confocal scanning approach is similar to the 
elliptical Radon transform63. Filtered back-​
projection methods are standard solutions to 
these inverse problems. Both computational 
time and memory requirements of these 
Radon transforms are tractable even for 
large-​scale inverse problems. Hence, several 
variants of back-​projection algorithms 
have been explored for NLOS imaging2,64–67, 
but when applied to NLOS imaging these 
algorithms have a computational complexity 
of O(N5) for N voxels. Like limited-​baseline 
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Fig. 3 | Demonstration of the capability of recording light in flight at picosecond timescales for 
a pulse of light propagating between three mirrors. Such time-​resolved measurements of light 
transport form the basis of many non-​line-​of-​sight imaging techniques. The laser light first hits the 
small circular mirror on the right and is directed towards the field of view of the single-​photon ava-
lanche diode (SPAD) camera, as indicated by the arrow in the first image. The field of view (FOV) is 
represented by dashed rectangles and corresponds to a region 35 × 35 cm2. In the successive frames 
the laser pulse is imaged at increasing times, indicated in each frame, before exiting the FOV in the 
last frame. Adapted from ref.50, CC BY 4.0.
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tomography problems68, NLOS problems 
are typically ill-​posed inverse problems 
because acquired measurements usually 
do not sample all Fourier coefficients. In 
microscopy and medical imaging, this is 
known as the ‘missing cone’ problem. To 
estimate these missing components, the 
inverse method must incorporate statistical 
priors to fill in these parts using iterative 
solvers.

Linear inverse methods. Linear inverse 
methods have been proposed to solve the 
convex optimization problem of estimating 
ρ from τ. Several of these approaches aim to 
use iterative optimization methods to solve 
this problem64,69,70, but such approaches are 
typically very slow. The light-​cone transform 
(Fig. 4d) was proposed as a closed-​form 
solution to the linear inverse problem, and 
it efficiently solves the exact linear inverse 
problem with a computational complexity 
of O(N3 log N) by assuming a smoothness 
prior on the reconstructed volume3. An 
implementation of this method on graphics 
processing units has achieved real-​time 
reconstruction rates71.

Inverse light transport with partial 
occlusions, surfaces and normals. This class 
of methods has received much attention in 
recent research proposals, because some of 
the simplifying assumptions of the image 
formation model (Eq. 1) can be lifted by 
solving the nonlinear problem rather than 
a linearized approximation. For example, 
several time-​resolved methods have included 
partial occlusions within the hidden 
scene in the image formation model72–74. 
Interestingly, it has been shown that 
occlusions and shadows in the hidden scene 
can also be exploited to facilitate passive 
NLOS approaches that do not require time-​
resolved imaging systems9,10,75,76. However, 
the associated inverse problems are much 
more ill-​posed than they are for active 
imaging, and the proposed algorithms often 
make restrictive assumptions. A few recent 
approaches have also incorporated hidden 
surface normals into the image formation 
model72,77, which can further help improve 
reconstruction quality. Finally, an emerging 
research direction is to reconstruct hidden 
surfaces, rather than volumes, directly 
from the transient measurements77–80. 
High-​resolution volumes are memory-​
inefficient data structures and can quickly 
exceed available computational resources. 
Therefore, in practice, a trade-​off between 
level of detail of a reconstructed volume and 
memory requirement may have to be made. 
Surface representations have the potential to 

represent finer geometric detail with fewer 
computational resources. It remains unclear, 
however, what the ‘best’ representation for 
general NLOS imaging is.

Wave optics models. These models 
— as opposed to the geometric optics 
model outlined above — have recently 
been explored for transient imaging 
configurations with time-​resolved detectors 
and pulsed light sources4,5,81–84 (Figs 4,5). In 
these methods, the light transport in the 
hidden scene is modelled using the time-​
dependent wave equation or other models 
from physical optics. A similar concept was 
also applied to NLOS data captured in the 
Fourier domain by an amplitude-​modulated 
continuous-​wave light source21.

The algorithms in this category do not 
necessarily try to solve the inverse problem 
of estimating the hidden geometry directly, 
unlike most of the methods discussed above. 
Rather, the transient image is treated as a 
virtual wave field and propagated backwards 
in time to a specific time instant. The 
geometry estimation problem then becomes 
that of relating the hidden geometry 
to specific properties of the temporally 
evolving wave field. As in a line-​of-​sight 
camera, the problem is thus divided into a 
linear operator that estimates the wave in 
the hidden scene (that is, the image) and a 
nonlinear problem of estimating properties 
such as geometry and bidirectional 

reflectance distribution functions from 
the image.

There are several benefits of a wave 
optics model for the NLOS problem. 
First, some of these approaches have been 
experimentally shown to be more robust to 
different types of reflectance properties of 
the hidden surfaces. Glossy, specular, diffuse 
or retro-​reflective materials can all be treated 
with the same method, whereas geometric 
optics approaches must either know and 
model the reflectance properties a priori 
or estimate them along with the hidden 
geometry. Second, wave models make it 
easier to draw the connection between 
NLOS imaging and related work in areas 
such as radar, seismic imaging, ultrasonic 
imaging and other established fields. For 
example, range migration techniques, 
including frequency–wavenumber or f–k 
migration, originally developed in the 
seismic imaging community85,86, and later 
adopted to synthetic aperture sonar87,88, 
ultrasound imaging89 and synthetic aperture 
radar90, result in some of the fastest and 
most robust NLOS imaging techniques5. The 
phase information of the light wave used 
in these experiments is not measured or 
required. What is used instead is the phase 
and wavefront of an intensity wave riding on 
the optical carrier wave. The phase of this 
wave is related to the time of arrival of the 
signal photons, not to their optical phase. 
The phase of the light wave is typically not 

Nature Reviews | Physics

P e r s p e c t i v e s

d  Light-cone transformc  Filtered back-projection

x
y

z

y
z

a  Measurement

b  Hidden scene

e  f−k migration 

y
t

x
y

z

Fig. 4 | NLOs reconstructions of a hidden room-sized scene. a,b | One approach to non-​line-​of-​sight 
(NLOS) imaging is to capture time-​resolved measurements sampled across a visible surface and recon-
struct the 3D shape and reflectance of the hidden scene. A disco ball produces the bright dots seen  
in the measurements of indirect light transport (panel a), and other diffuse and glossy objects produce 
the streaks. c | Of the methods for reconstructing shape and reflectance from these measurements, 
filtered back-​projection is conceptually one of the simpler methods; it involves a delay-​and-​sum (that 
is, back-​projection) operation of the time-​resolved measurements, followed by a heuristic high-​pass 
filter on the result. d | The light-​cone transform is a fast reconstruction algorithm that produces more 
accurate reconstructions in less time than other approaches, but it requires the hidden objects to be 
either diffuse or highly reflective. e | NLOS imaging with frequency–wavenumber (f–k) migration is 
both fast and versatile. The wave-​based nature of this inverse method is unique in being robust to 
objects with diverse and complex reflectance properties, such as the glossy dragon, the diffuse statue 
and the reflective disco ball shown in this scene. All volumes are rendered as maximum-​intensity  
projections. Adapted with permission from ref.5, Association for Computing Machinery.



accessible with time-​resolved NLOS imaging 
systems. The time-​of-​flight information of 
indirect light transport must instead be used 
to estimate object shape, which makes the 
associated inverse problems different.

Data-​driven approaches. Data-​driven 
approaches are emerging as a tool for 
NLOS reconstructions. Neural networks 
can reconstruct hidden scenes from steady-​
state data captured with a continuous light 
source and a conventional camera91,92. 
However, practical application of neural 
networks to time-​of-​flight data faces 
the difficulty of generating sufficient 
training data. One approach could be to 
generate data numerically based on a known 
forward model. Recently, training data were 
experimentally collected using actual people, 
and these subsequently allowed NLOS 
classification of a small set of individuals and 
of their positions93.

NLOS tracking. NLOS tracking of 
objects and people with time-​resolved 
imaging systems is also an active 
area of research3,52,55,94,95. The tracking 
problem is substantially simpler than 
reconstructing a full hidden 3D volume, 
which makes it computationally more 
efficient to implement. These NLOS 
tracking approaches pave the way for 
future research that goes beyond hidden 
shape reconstruction and that could aim 
at classification93, object detection, target 
identification or other inverse problems that 
build on transient light transport.

NLOS imaging without a relay wall. Most 
existing NLOS approaches require the 
imaging system to scan a large area on a 
visible surface, on which the indirect light 
paths of hidden objects are sampled. In 
many applications, however, optical access 

to a large scanning area may not be available. 
Inverse methods have been derived that 
exploit scene motion to simultaneously 
estimate both the shape and trajectory of 
a hidden object from transient images96. 
This problem is far more challenging and 
ill-​posed than conventional NLOS imaging 
because the light transport is only measured 
along a single optical path, but it may further 
extend the application space of NLOS 
imaging techniques.

Resolution limits
The resolving power of conventional, 
diffraction-​limited imaging systems is 
fundamentally limited by the numerical 
aperture of the optics and the wavelength 
at which they operate97. Time-​resolved 
NLOS imaging also obeys fundamental 
resolution limits. These are primarily 
defined by two factors, namely the area 
on the visible surface over which the 
time-​resolved indirect light transport of the 
hidden scene is recorded and the temporal 
resolution of the imaging system. The first 
factor, the scanning area, is analogous to 
the numerical aperture of a conventional 
imaging system — the larger the scanning 
area or numerical aperture, the better the 
transverse resolution. The second factor, 
temporal resolution, is somewhat analogous 
to the wavelength-​limiting resolution of 
conventional systems. Together, these two 
characteristics of an NLOS imaging system 
define both transverse and axial resolution 
of a hidden volume, which can be estimated 
unambiguously — that is, without the use of 
statistical priors.

Formally, the resolution of an NLOS 
system is defined as the minimum resolvable 
distance of two scatterers. These two 
scattering points are resolvable in a hidden 
3D space only if the measurements of their 
indirect reflections are resolvable in time. 

Assuming that the temporal resolution 
of the system is given by the full-​width at 
half-​maximum (FWHM) of its temporal 
impulse response, transverse and axial 
resolutions are

.

x c w z
w

z c

Δ ≥ × +
2

FWHM,

Δ ≥ × FWHM
2

(2)

2 2

Here, Δx and Δz are the minimum 
resolvable distance between the two 
scatterers in the transverse and axial 
dimension, respectively; c is the speed of 
light; z is the distance of the point scatterers 
from the visible surface; and the scanning 
area has a size of 2w × 2w. These resolution 
limits were derived for the confocal scanning 
configuration3. For non-​confocal scanning 
configurations, the transverse resolution 
theoretically decreases by a factor of 2. Other 
works have also used signal processing 
techniques98, linear systems approaches99 
or feature visibility100 to bound localization 
and photometric error in NLOS imaging 
scenarios.

Other NLOS imaging approaches
It is worth mentioning that there are other 
techniques that do not require transient light 
imaging capability.

Steady-​state systems use a continuous 
spatially confined light source and a slow 
conventional camera or detector to detect 
spatial variations in the return light. In these 
systems, integration times of the detector 
are long enough to consider the time of 
flight of the light to be infinite, and what 
is detected is always a steady-​state scene 
response. For example, the location of a 
single hidden object can be estimated when 
using a shortwave infrared light source and 
camera101. An intriguing modification of the 

www.nature.com/natrevphys

P e r s p e c t i v e s

a b

Exposure time: 1 ms
Data collection time: 24 s

Exposure time: 5 ms
Data collection time: 2 min

Exposure time: 10 ms
Data collection time: 4 min

Fig. 5 | Reconstructions of a large scene using the phasor-field virtual wave approach. Data are collected with a single-​pixel single-​photon avalanche 
diode (SPAD), using point scanning to emulate a large detector array. a | The hidden scene. b | Reconstructions. The exposure time per scanned point and 
total data collection time is shown under each image in panel b. The entire scan involves 24,000 points. The scene is approximately 2 m wide and 3 m deep. 
Adapted from ref.4, Springer Nature Limited.



steady-​state approach is to use occlusions 
in the scene, such as edges, to provide 
additional spatial information, and to rely 
on motion and differential measurements 
to eliminate problems with background 
light. In suitable scenes, these methods can 
provide detailed information about objects 
in the scene using inexpensive, passive 
visible light cameras and natural ambient 
light sources9–11,73,76,92,102. In interferometric 
approaches, the scene is illuminated with 
a coherent light source, and interference 
patterns in the returned light are analysed. 
For example, the spatial speckle of the 
returned light can be collected and analysed 
to reconstruct 2D NLOS images7. This 
method makes use of the memory effect 
that preserves angular information in the 
interaction with thin scatterers. Doing so 
limits existing demonstrations to imaging 
very small objects, covering a solid angle 
of no more than several degrees when 
viewed from the wall. This limitation could 
probably be improved by incorporating 
more information, such as speckle patterns 
from multiple coherent light sources. 
Spatial correlations within the reflected 
light from an observation wall can also 
be used to directly retrieve information 
of a hidden scene, made up of active yet 
incoherent light sources103, for example. 
Extending this concept to the temporal 
domain (that is, tracking the temporal 
correlations within the reflected beam) 
enables a time-​of-​flight approach with 
an impressive 10-​fs resolution11. We have 
also already mentioned adaptive shaping 
of the illuminating laser beam that can 
transform the wall into a mirror by using 
an input spatial phase on the beam that 
compensates for scattering from the first 
surface. This makes it possible to scan a 
focused spot across the scene and retrieve 
image information from the reflected light 
intensity during the scan60. Finally, deep 
learning techniques have recently been 
demonstrated to provide a useful framework 
to solve challenging inverse correlography 
problems arising in interferometric NLOS 
approaches104.

Another group of interferometric 
methods is based on illuminating the hidden 
scene with a pulsed coherent source via the 
relay surface and interfering the returning 
light with a delayed local oscillator light 
beam derived from the same coherent 
illumination source. This process can be 
thought of as a coherent time gating method 
that produces data that can be treated 
similarly to data from other time-​resolved 
detectors. An example of this used a set-​up 
similar to a time-​domain optical coherence 

tomography system20. Interference is used 
in this case as a coherence gate to determine 
the time of flight of the light through the 
scene. The need for an adjustable optical 
delay line complicates this set-​up. Another 
approach uses interference between 
the speckle patterns created by a NLOS 
object; the reconstruction is obtained 
by combining the results from different 
illumination frequencies. This procedure 
has the same effect as using a short pulse but 
eliminates the need for a delay line. Other 
efforts into coherent NLOS imaging include 
speckle interferometry to detect motion105,106.

Conclusions and future directions
LiDAR systems are emerging as a standard 
imaging modality in autonomous driving, 
robotics, remote sensing and defence. The 
same detectors — avalanche photodiodes 
(APDs) and SPADs — are also increasingly 
used in consumer electronics, fluorescence 
lifetime microscopy and positron emission 
tomography. SPADs in particular are an 
ideal platform for extending LiDAR to 
NLOS imaging because they address two 
primary challenges: being able to detect 
a few, indirectly reflected photons among 
many, and time-​stamping the photon time of 
arrival with high accuracy.

The ability to image objects outside the 
direct line of sight is likely to be most useful 
for applications that already use LiDAR 
systems. For instance, self-​driving cars could 
sense obstacles beyond the next bend or in 
front of the car ahead, and could more safely 
navigate around them. Eventually, NLOS 
imaging could become a software upgrade 
in existing or future LiDAR systems. For this 
reason, we believe that such time-​resolved 
NLOS imaging systems are one of the most 
promising directions in this emerging 
research area.

There are multiple approaches and 
options for NLOS imaging, even when 

restricted to time-​of-​flight techniques. 
The main techniques discussed here are 
summarized in Table 1 and Fig. 6, together 
with their hardware requirements (based 
on present-​day implementations). Each 
approach has its own advantages, and these 
need to be weighed when considering 
a particular application. For example, 
some NLOS LiDAR applications for the 
automotive industry may not require full 
3D reconstruction of a scene but instead 
will benefit from a much simpler approach 
geared towards locating the position of a 
hidden object and identifying its nature 
(such as human, car or bicycle). Compared 
with alternative methods to image occluded 
spaces, such as transmitted or reflected 
radar, X-​ray transmission, reflected acoustic 
imaging or the placement of mobile cameras 
or mirrors, optical NLOS imaging has the 
potential to work in real time, particularly 
for large detector-​to-​scene (that is, 
‘stand-​off ’) distances, albeit with targets that 
are limited to distances of 2–3 m behind the 
obstacle. This kind of task becomes even 
more favourable when the hidden object 
is in movement, in which case subtraction 
of the background is straightforward and 
has already been demonstrated to work 
at stand-​off distances of 50 m or more in 
daylight. Recent reports indicate stand-​off 
distances of 1.4 km. Simple range-​finding 
from behind an obstacle can also be 
achieved with a single-​shot measurement if 
APDs rather than SPADs are used, as APDs 
can collect multiple photons from a single, 
high-​energy return signal107.

However, there are scenarios in which full 
3D imaging is indeed desired, for example 
in reconnaissance missions or in situations 
for which 3D information of an otherwise 
inaccessible area is needed. Examples that we 
have encountered range from identification 
of suitable underground cave sites for future 
manned planet missions to decommissioning 
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Table 1 | Methods and requirements for the most common reconstruction techniques

Reconstruction method Light source Detector Refs

Detection or localization High-​repetition/single-​shot laser SPAD or APD 55,107

Backpropagation High-​repetition laser Streak camera, SPAD 
array

2,56

Light-​cone transform,  
f–k migration

High-​repetition laser SPAD array 3,5

Virtual/phasor field High-​repetition laser SPAD or SPAD array 4,82–84

Steady-​state, occlusions, 
coherence

CW laser, ambient light Standard CMOS 
camera, APD

7,10,101,102

Machine learning Pulsed or continuous-​wave laser SPADs, standard 
CMOS camera

91–93,104

More details and references are provided in the main text. APD, avalanche photodiode; CMOS, 
complementary metal–oxide–semiconductor; f–k, frequency–wavenumber; SPAD, single-​photon 
avalanche diode.



of radioactive nuclear fission test facilities. 
In these situations, the longer acquisition 
times required for 3D reconstruction and 
high laser powers may be less of an issue and 
an acceptable compromise. Existing systems 
could potentially already successfully tackle 
such tasks.

Finally, there is scope for future work 
combining the optical NLOS imaging 
techniques outlined in this Perspective 
with other technologies. For example, radar 
and WiFi can provide partial information 
directly through certain kinds of wall108–113. 
Approaches based on sound8 have also been 
proposed. These and other technologies 
could potentially complement each 
other, either through direct data fusion 
that increases the collected information, 
or by using one approach to provide 
coarse-​grained information that would 
indicate the interest or need to continue with 
fine-​grained optical techniques.
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