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Abstract In recent years, unconventional metamaterial prop-
erties have triggered a revolution of electromagnetic research
which has unveiled novel scenarios of wave-matter interaction.
A very small dielectric permittivity is a leading example of such
unusual features, since it produces an exotic static-like regime
where the electromagnetic field is spatially slowly-varying over
a physically large region. The so-called epsilon-near-zero meta-
materials thus offer an ideal platform where to manipulate the
inner details of the “stretched” field. Here we theoretically prove
that a standard nonlinearity is able to operate such a manipula-
tion to the point that even a thin slab produces a dramatic non-
linear pulse transformation, if the dielectric permittivity is very
small within the field bandwidth. The predicted non-resonant
releasing of full nonlinear coupling produced by the epsilon-
near-zero condition does not resort to any field enhance-
ment mechanism and opens novel routes to exploiting matter

nonlinearity for steering the radiation by means of ultra-compact
structures.

Enhanced nonlinear effects in pulse propagation through
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1. Introduction

During the last decade the metamaterial route for achiev-
ing unusual electromagnetic properties has attracted a great
deal of interest in both theoretical and applied research,
since it has brought to light novel electromagnetic regimes
[1–6], and has suggested a number of remarkable devices
for extreme manipulation of the radiation [7–9]. Structures
exhibiting very small dielectric permittivity, or epsilon-
near-zero (ENZ) metamaterials [10–15], belong to the fam-
ily of media able to affect electromagnetic radiation in a
very unconventional way because the medium’s effective
wavelength is much larger than the vacuum wavelength,
and because they host a regime where both field amplitude
and phase are slowly-varying over relatively large portions
of the bulk, which is quite opposite to geometrical optics.
Such a key feature has been exploited to conceive setups
where ultra-narrow ENZ channels are able to ”squeeze”
electromagnetic waves at will [16–19], and to develop new
paradigms of devices for tailoring the antenna radiation
pattern [20–22]. In addition, ENZ metamaterials have also
been shown to support a rich phenomenology of surface
waves [23–29], to achieve perfect absorption [30], to en-
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hance spatial dispersion effects [31], and to support novel
cloaking mechanisms [32, 33].

Other interesting mechanisms and effects arise when
the ENZ regime is combined with matter nonlinearity. A
kind of crucial interplay between small linear permittivity
and optical nonlinearity has been identified in Ref. [34],
where the authors discuss an all-optical transition from di-
electric to metal behavior in a nonlinear ENZ slab. A similar
mechanism has been exploited to predict a class of solitons
[35] where the intensity-driven dielectric-metal transition
occurs along the transverse soliton profile, yielding exotic
features like transverse power flow reversing [36], unusual
shapes like hollow-core [37], and two-peaked and flat-top
profiles [38]. Furthermore, the combination of the ENZ
regime with nonlinearity benefits from the non-resonant
enhancement of the normal electric field component across
the vacuum-ENZ medium interface [39], producing intrigu-
ing effects like transmissivity directional hysteresis [40,41]
and enhancement of second and third harmonic genera-
tion [42–45]. A different field enhancement mechanism
has been identified within narrow ENZ plasmonic chan-
nels, which has been exploited to boost optical nonlinear-
ities [46], to investigate temporal soliton excitation [47],
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and for the enhancement of second-harmonic generation
efficiency [48]. Recently the existence of frozen light in
ENZ media with cubic nonlinearity has been theoretically
predicted [49].

In this work we theoretically prove that the interplay
between the ENZ condition and the optical nonlinearity
triggers a novel nonlinear matter-wave coupling which lit-
erally unlocks the full potential of the generally weak matter
nonlinear response. By theoretically investigating the scat-
tering of electromagnetic pulses by a thin nonlinear disper-
sive slab we show that a marked nonlinear pulse dynamics
occurs only if the absolute value of the dielectric permittiv-
ity is very small over the pulse bandwidth. Such a nonlinear
scenario stems from the fact that, in the ENZ regime, the
field is spatially slowly varying and accordingly not char-
acterized by a large number of ”nodes” around which its
amplitude is small, as the medium nonlinearity is allowed
to uniformly affect the field over the entire bulk. In other
words, as a viable strategy to attain a highly nonlinear re-
sponse, here we suggest to enlarge the physical volume
over which the nonlinearity is effective by means of the
ENZ condition, as opposed to standard approaches that re-
sort to field enhancement mechanisms or giant nonlinear
parameters.

2. Model

The ENZ regime occurs when |ε(ω)| � 1 holds over the
entire spectral bandwidth of the incident field. In conjunc-
tion with low absorption, this occurs if the field has a rel-
atively narrow-band whose frequencies are very close to a
zero of the real part of the medium permittivity. Permittiv-
ity zero-crossing-points are present in standard materials
close to the resonant absorption frequencies and have been
used to achieve the ENZ regime [42]. On the other hand,
metamaterials offer an ideal platform for achieving zero-
crossing-points of the permittivity since, due to the fact
that the size of the unit cell is much smaller than the ra-
diation wavelength, the effective permittivity experienced
by the radiation is spatially homogeneous and its features
can be tailored by choosing the relative metal-dielectric

content of the inclusions [11–15]. For large optical inten-
sities, the nonlinear response of both standard media [50]
and metamaterials (in the homogeneous effective medium
description) [51–53] is usually described by resorting to
the paradigmatic Kerr model where the medium polariza-
tion P satisfies an anharmonic oscillator equation forced by
the optical field E [50]. Here we model the dynamics of P
through the equation [54–58]

∂2P
∂t2

+ δeωe
∂P
∂t

+ ω2
e

(
1 + |P|2

P2
s

)−3/2

P = ε0 (εs − 1) ω2
e E

(1)

where Ps is the saturation polarization that governs non-
linear oscillator behavior. This model is justified by the
fact that, for |P| much smaller than Ps , Eq.(1) reproduces
the standard Kerr anharmonic equation and for larger |P|
it accounts for physically important higher order nonlinear
terms (e.g. quintic contributions and saturation) [59]. Up to
the zeroth order in |P|/Ps , Eq.(1) reproduces the single-pole
Lorentz oscillator with resonant frequency ωe, loss coeffi-
cient δeωe and static dielectric permittivity εs . Therefore,
in the linear regime, the dielectric permittivity experienced
by monochromatic e−iωt fields is

ε(ω) = 1 + εs − 1

1 − iδe

(
ω
ωe

)
−

(
ω
ωe

)2 , (2)

and it admits the zero-crossing-point

ω0 = ωe√
2

{(
εs + 1 − δ2

e

) +
[(

εs + 1 − δ2
e

)2 − 4εs

]1/2
}1/2

(3)

since Re[ε(ω0)] = 0. Therefore, Eq.(1) contains all the in-
gredients necessary to describe the realistic and very gen-
eral nonlinear response of both standard media and homog-
enized metamaterials also encompassing the ENZ regime.

In order to investigate such a regime we consider
the scattering interaction reported in Fig. 1a, where an

Figure 1 Pulse scattering by a slab supporting the ENZ regime. (a) Geometry of the scattering interaction between a transverse
magnetic pulse which is both spatially and temporally localized and a material slab having, in the linear regime, zero-crossing-points of
the real part of its dielectric permittivity. (b) In the linear regime where the medium polarization |P| is much smaller than the saturation
polarization Ps (see Eq.(1)), the slab has a dielectric permittivity ε(ω) (see Eq.(2)) with a standard Lorentz profile located at the resonant
frequency ωe and with a zero-crossing-point of its real part at ω0 (see Eq.(3)). Dispersion parameters have been chosen in such a
way that the imaginary part of the permittivity is low around zero-crossing-point so that |ε(ω)| is much smaller than one in a spectral
bandwidth around ω0 and the slab can support the ENZ regime.
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electromagnetic pulse is launched from vacuum to or-
thogonally impinge on the surface of a dielectric slab
whose polarization is described by Eq.(1). The material
dispersion parameters are δe = 0.01 and εs = 1.2 so that
ω0 = 1.095ωe and the imaginary part of the permittiv-
ity around the zero-crossing-point is small, as reported in
Fig. 1b and in its inset, thus allowing the ENZ regime.
We have set for the slab thickness L = 1.25λe where
λe = 2πc/ωe is the resonant wavelength and therefore,
since we will mainly consider pulses whose bandwidth is
localized around the zero-crossing-point, the slab thickness
is comparable with the main field wavelength. The pulse is
a transverse magnetic (TM) excitation whose profile at the

launching plane Ex (x, zin, t) = E0e− x2

σ2 e− (t−t0)2

τ2 sin(ω̄t) has
time shift t0 = 3.178 · 103ω−1

e and it is both spatially and
temporally localized, σ = 1.25λe and τ = 1.059 · 103ω−1

e
being its transverse and temporal widths, respectively. Note
that, if the ENZ medium is a homogenized metamaterial
whose unit cell size d is much smaller than the wavelength
λe (d � λe), both the transverse σ = 1.25λe and longitudi-
nal cτ = 168.5λe pulse widths are much greater than d thus
consistently validating the use of the homogeneous model
of Eq.(1). The amplitude E0 and the carrier frequency ω̄ will
be varied to investigate the ENZ regime. All the situations
considered below are in the quasi-monochromatic regime
since the carrier frequency ω̄ is always comparable with ωe

and the pulse spectral width δω � 1/τ = 9.442 · 10−4ωe is
much smaller than ωe.

Electromagnetic propagation within the slab is de-
scribed by Maxwell equations coupled to Eq.(1) for the
polarization so that, by using the dimensionless coordinates
R = ωer/c, T = ωet and dimensionless fields e = ε0E/Ps ,
h = H/(cPs), p = P/Ps , the pulse scattering is described
by the set of equations

∇R × e = − ∂h
∂T

,

∇R × h = ∂e
∂T

+ ∂p
∂T

,

∂2p
∂T 2

+ δe
∂p
∂T

+ (
1 + |p|2)−3/2

p = (εs − 1) e (4)

within the slab, by the first two equations with p = 0 outside
of the slab and matching conditions of the tangential electric
and magnetic field components at the slab surfaces.

The pulse scattering by the slab both in and outside of
the ENZ regime was simulated by solving the above equa-
tions through a home-made finite-difference time-domain
code suitable for dealing with transverse magnetic pulses
e(X, Z , T ) = ex (X, Z , T )i + ez(X, Z , T )k, h(X, Z , T ) =
hy(X, Z , T )j. At the edges of the computational domain
perpendicular to the Z axis scattering boundary condition
where adopted whereas at those perpendicular to the X axis
the vanishing of all the field components was imposed.

Note that, even though the pulse is in the quasi-
monochromatic regime, we here do not resort to the slowly-
varying envelope approximation (SVEA), our predictions

being obtained by solving the full Maxwell equations cou-
pled to the matter polarization equation (see Eqs.(4)).
We have decided to provide a full wave analysis of the
pulse scattering since the SVEA can become inaccurate
in the ENZ regime. In fact the derivation of the nonlin-
ear Schrödinger equation is based on the expansion of the
wavenumber

k(ω) = ω

c

√
ε(ω) = k0 + k1(ω − ω̄) + k2(ω − ω̄)2 + . . . ,

(5)

where kn = 1
n!

dnk
dωn |ω̄, which can be truncated up to the sec-

ond order by exploiting the quasi-monochromatic condition
δω/ω̄ � 1. In the ENZ regime where ω̄ = ω0, the magni-
tudes of all the coefficients kn with n ≥ 1 are very large
since

√
ε(ω0) and its powers appear in their denominators

and this prevents the expansion of k(ω) to be truncated with
a small number of terms. From a physical point of view,
the SVEA allows to describe pulses which are long enough
to contain a large number of field oscillations. In the ENZ
regime, the spatial variation scale of the field is compara-
ble with 2πc/(ω0

√|ε(ω0)|) and it is generally so large that
a quasi-monochromatic pulse is generally not sufficiently
long to contain a large number of field oscillations. There-
fore a description of the ENZ regime cannot be generally
based on the nonlinear Schrödinger equation.

3. Nonlinear wave-matter interaction in the
ENZ regime

In the first set of simulations we have considered various
pulses with carrier frequency located at the zero-crossing-
point, i.e. ω̄ = ω0, with different amplitudes e0 = ε0 E0/Ps .
In Fig. 2a we have plotted the absolute value of the
Fourier transform eF

x (arbitrary units) of the incoming pulse
ex (0, Zin, T ) superimposed to the real and imaginary parts
of the permittivity. This figure clearly shows that |ε(ω)|
is much smaller than one all over the field spectrum, thus
proving that the interaction occurs in the ENZ regime.

In Fig. 2b, which contains the main result of the present
paper, we report, for a number of different amplitudes e0,
the space-time profiles of the outgoing pulses. Specifi-
cally we plot the absolute values of the analytic signals
eS

x (X, Zout , T ) and eS
z (X, Zout , T ) of the field components,

normalized with respect to the amplitude e0, at the exit slab
surface Zout = ωe L/(2c). For e0 = 10−6 and e0 = 10−2 the
normalized outgoing pulses are identical. This shows that
the pulse amplitudes are small enough to prevent the matter
nonlinearity from influencing the scattering. By increasing
the pulse amplitude, for e0 = 2 · 10−1 and e0 = 4 · 10−1,
the normalized outgoing pulses undergo dramatic transfor-
mation. The dependence on the input intensity is a key
signature of the onset of the nonlinear regime. At higher
pulse intensities, the normalized outgoing pulses having
amplitudes e0 = 1.2 and e0 = 1.6 are almost identical, so
that the nonlinear dependence of the scattering process on
the input intensity saturates as expected from Eq.(1).
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Figure 2 Nonlinear signatures of the scattering in the ENZ regime, ω̄ = ω0. (a) Spectrum |eF
x | of the incoming pulse (arbitrary units)

and real and imaginary parts of the slab linear dielectric permittivity ε. The interaction is in the ENZ regime since |ε| � 1 holds over
the pulse spectrum. (b) Absolute values of the dimensionless analytic signals, normalized to the amplitude of the incoming pulse e0,
|eS

x |/e0 and |eS
z |/e0 of the components of the outgoing pulse at the exit slab plane Zout = ωeL/(2c). The dependence of |eS

x |/e0 and
|eS

z |/e0 on e0 is the key signature of the nonlinear wave-matter interaction. (c) Square absolute values of the dimensionless analytic
signal of the polarization |pS

x |2 + |pS
z |2, dimensionless displacement field components spectra |d F

x | and |d F
z | and dimensionless electric

field components spectra multiplied by permittivity absolute value |εeF
x | and |εeF

z | at the slab middle plane Z = 0. The occurrence of the
nonlinear wave-matter interaction is further testified by two facts: 1) |pS

x |2 + |pS
z |2 is not very much smaller than one and 2) |d F

x | 	= |εeF
x |

and |d F
z | 	= |εeF

z |, i.e. the standard linear constitutive relation does not hold. (In the plots where axes labels are not reported, the axes
labels are those of the first plot of the row.)

In Fig. 2c the transition from the linear regime to
the nonlinear one is pictorially shown in two different
and equivalent ways: (i) the analysis of the polarization
of the slab, and (ii) the spectral analysis of the field dy-
namics within the slab. In the first row of Fig. 2c we re-
port the space-time profile of the polarization produced
within the slab by some of the pulses considered in Fig.
2b, by plotting the corresponding square absolute values
|pS

x (X, 0, T )|2 + |pS
z (X, 0, T )|2 of the dimensionless ana-

lytic signal of the polarization at the slab middle plane
Z = 0. The relevance of such quantity stems from the fact
that it is comparable with |P|2 /P2

s which plays a key role in

the linear-nonlinear transition of the wave-matter coupling
(see Eq.(1)) through the nonlinear resonant frequency

ω̄e(P) = ωe

(
1 + |P|2

P2
s

)−3/4

. (6)

For e0 = 10−6 the normalized square polarization is so
small that ω̄2

e (P) � ω2
e . Accordingly, the linear regime

(where the dielectric permittivity of Eq.(2) governs elec-
tromagnetic propagation) holds. For e0 = 2 · 10−1 the nor-
malized square polarization is small enough to allow a
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perturbative description of medium nonlinearity since
ω̄2

e (P) � 1 − 3 |P|2 /(2P2
s ). In this case Eq.(1) is well-

known to yield a nonlinear optical regime characterized by a
Kerr nonlinearity [50]. For e0 = 1.2 the normalized square
polarization is accordingly larger and does not generally
allow a perturbative approximation of ω̄2

e (P), thus trigger-
ing the emergence of nonlinear saturation. In the second
and third row of Fig. 2c we plot the absolute values of the
Fourier transforms d F

x (X, 0, ω) and d F
z (X, 0, ω) (green sur-

faces) of the components of the dimensionless displacement
field d = e + p at the slab middle plane Z = 0. In the same
rows we also plot the absolute values |ε(ω)eF

x (X, 0, ω)|
and |ε(ω)eF

z (X, 0, ω)| (red surfaces) of the Fourier trans-
forms of the electric fields components at the same plane
Z = 0 multiplied by the linear permittivity of Eq.(2). For
e0 = 10−6 it is evident that dF = εeF so that the standard
linear relation between the displacement and the electric
field holds. For e0 = 2 · 10−1 and e0 = 1.2 the discrepancy
between the displacement field and its linear counterpart is
dramatically evident thus restating that a marked nonlinear
regime holds.

The most remarkable nonlinear trait of the scattering at
hand in the ENZ regime is that the normalized amplitude of
the outgoing pulse grows as the amplitude of the incident
pulse is increased, as shown in Fig. 2b. This phenomenol-
ogy admits a simple explanation in terms of an effective
nonlinear shift of the resonant frequency produced by the
emergence of the nonlinear regime. From Fig. 2c it is evi-
dent that the higher the amplitude e0 of the incoming pulse
the stronger the polarization induced within the slab. From
Eq.(6) this produces a local decrease of the nonlinear res-
onant frequency ω̄e which can be equivalently interpreted
as an effective drift of the pulse spectrum toward the spec-
tral region where the real part of the dielectric permittivity
is positive (see Fig. 1b). Therefore as e0 increases the slab
becomes more transparent to the pulse and allows larger en-
ergy transmission. Since the pulse is quasi-monochromatic
and its spectrum is centered at the zero-crossing-point, even
a slight spectral drift produces a relatively large change
of the material response, which explains the dramatic
dependence of the slab transmissivity on e0 reported in
Fig. 2b.

It is worth noting that the interaction regime has a highly
nonlinear character since a distinct pulse self-action occurs
even if the slab is very thin, its thickness being compara-
ble with the pulse carrier wavelength (L = 1.368λ0 where
λ0 = 2πc/ω0 is the wavelength of the zero-crossing-point).
In addition, we observe that the described nonlinear wave-
matter interaction is not due to the enhancement of the
longitudinal electric field component ez [39–45]. Indeed,
the transverse magnetic pulse incident from vacuum has a
longitudinal component resulting from the finite size of the
beam in the transverse direction (along the x-axis) and, due
to the field matching at the slab edge, the longitudinal com-
ponent within the slab is roughly |ε|−1 � 20 times larger
than its vacuum counterpart. However, from the second and
third row of Fig. 2c, it evident that |εex | and |εez| are com-
parable within the slab so that |ex | and |ez| are comparable
as well. This demonstrates that in this case the longitu-

dinal field component ez does not play the usual leading
role we have grown accustomed to, notwithstanding the
fact that the longitudinal component is still enhanced. As
a consequence, the same nonlinear mechanism is triggered
with incident transverse electric pulses. Therefore, a dis-
tinct advantage one gains is that, by focusing more tightly
an incident transverse magnetic pulse, both the enhance-
ment of the longitudinal field and the kind of nonlinear
behavior we have just discussed can in principle combine
for optimal results.

In order to better appreciate the extent of the above re-
sults, it is worth estimating, in a realistic situation, the peak
intensity of the pulse which triggers the linear-nonlinear
transition of the scattering dynamics. Note that, in the limit
|P| /Ps � 1, Eq.(1) reduces to

∂2P
∂t2

+ δeωe
∂P
∂t

+ ω2
e P − 3ω2

e

2P2
s

|P|2 P = ε0 (εs − 1) ω2
e E,

(7)

which, using the well-known perturbative technique (see
Ref. [50]) for extracting the third order nonlinear suscepti-
bility χ (3), yields

Ps = ε0

√
3(εs − 1)3

2χ (3)
, (8)

which provides an estimation of the saturation polarization
of a nonlinear medium in terms of its χ (3). From panel b
of Fig. 2, we note that the linear-nonlinear transition of the
pulse scattering dynamics occurs for e0 � 10−1 which cor-
responds to E0 = 10−1 Ps/ε0 and to the pulse peak intensity
I0 = cε0|E0|2/2 given by

I0 = 10−2 3cε0(εs − 1)3

4χ (3)
. (9)

For the above used value of εs , and for the realistic nonlin-
ear susceptibilities χ (3) = 10−20, 10−19 and 10−18m2/V 2,
Eq.(9) yields I0 = 1.59, 0.15 and 0.01GW/cm2 which are
feasible peak intensities easily achievable with picoseconds
laser pulses.

4. Absence of nonlinear effects outside
of the ENZ regime

The remarkable impact of matter nonlinearity on electro-
magnetic propagation in the ENZ regime is rendered even
more peculiar and fascinating by the fact that no deviation
from linear behavior occurs in the pulse scattering outside of
the ENZ regime. This important fact is proved by a second
set of simulations where we have considered various pulses
identical to those discussed in Fig. 2, except for their carrier
frequencies, which we have set to ω̄ = 1.6ω0. The results
are reported in Fig. 3, where we have plotted the same quan-
tities considered in Fig. 2. Figure 3a clearly shows that the
incoming pulse spectrum |eF

x | is located in a spectral region
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Figure 3 Linear character of the scattering outside of the ENZ regime, ω̄ = 1.6ω0. (a) The incoming pulse spectrum |eF
x | is located

at a spectral region where |ε| � 0.9 and therefore the interaction is outside of the ENZ regime. (b) For all the incoming pulses with
amplitudes in the range 10−6 < e0 < 1.6 the absolute values of the normalized analytic signals |eS

x |/e0 and |eS
z |/e0 of the outgoing

pulse are effectively identical. (c) For the pulse with amplitude e0 = 1.2 the square absolute values |pS
x |2 + |pS

z |2 of the dimensionless
analytic signal of the polarization within the slab are uniformly much smaller than 1. For the same pulse amplitude the dimensionless
displacement field components spectra, |d F

x | and |d F
z |, coincide with the dimensionless electric field components spectra multiplied by

permittivity absolute value, |εeF
x | and |εeF

z |, within the slab. This results shows that pulse scattering outside of the ENZ regime is fully
linear.

where |ε| � 0.9. Therefore, interaction does not occur in the
ENZ regime, and the slab shows purely linear dielectric be-
havior. Figure 3b shows that the pulse amplitude e0 has no
impact on the scattering since for all the considered pulses
with 10−6 < e0 < 1.6 the profiles of the absolute values of
the normalized analytic signals |eS

x |/e0 and |eS
z |/e0 are all

the same. Figure 3c reveals that the square absolute values
|pS

x |2 + |pS
z |2 of the dimensionless analytic signal of the

polarization within the slab, even for the relatively large
pulse amplitude e0 = 1.2, is uniformly much smaller than
1. In addition, Fig. 3c shows that, for the same large pulse
amplitude e0 = 1.2, the standard linear relation dF = εeF

holds between the displacement and the electric field within
the slab. As a result, pulse scattering does not reveal any
nonlinear traits if the pulse carrier frequency is not close
to the zero-crossing-point, no matter how large the pulse
amplitude e0 is made. We conclude that the slab governed
by Eq.(1) does not play host to a nonlinear wave-matter
interaction, unless the ENZ regime is exploited.

5. Mechanism supporting the highly
nonlinear wave-matter coupling in the ENZ
regime

The discussed nonlinear wave-matter interaction that oc-
curs only in the ENZ regime admits an explanation which
is closely related to the slowly varying character of the elec-
tromagnetic field imposed by the very small permittivity. In
Fig. 4 we plot the spatial profiles of the dimensionless elec-
tric ex and polarization px fields, at a specific time T = 753,
for two of the pulses considered above, and having the same
amplitude e0 = 4 · 10−1 and different carrier frequencies
ω̄ = 1.6ω0 and ω̄ = ω0. The first pulse (left column of

Fig. 4) is tuned outside of the ENZ regime. Its scattering
is purely linear, whereas the second pulse (right column of
Fig. 4) with ω̄ = ω0 is in the ENZ regime and it has been
shown to display a marked nonlinear dynamics. Consider
the first pulse with ω̄ = 1.6ω0 and note that, at the beginning
of the scattering interaction, pulse propagation is evidently
linear since the initial electric field is small. Therefore the
profile of the pulse electric field has a considerable number
of nodes, the regions of low electric field around such nodes
drift in time due to propagation, the amplitude |A(r, t)|
of the electric field E(r, t) = Re[A(r, t)e−i1.6ω0t ] driving
the polarization at each point rapidly varies between zero
and it maximum value. Since in the linear regime Eq.(1)
yields

P(t) = ε0

∫ t

−∞
dt ′χ (t − t ′)E(t ′), (10)

where χ (t) is the Lorentz susceptibility, we conclude that
the rapid variation of the electric field amplitude forbids
the polarization from locally increasing and from driving
the scattering process out of the linear regime. In the case
of the second pulse with ω̄ = ω0 the initial linear dynam-
ics forces the electric field to be spatially slowly varying
within the bulk since it is in the ENZ regime. As a conse-
quence, very few nodes appear in the electric field profile
and correspondingly the amplitude |A(r, t)| of the electric
field E(r, t) = Re[A(r, t)e−iω0t ] has a time variation scale
much slower than the first pulse, occurring over a physi-
cally large portion of the bulk. Hence the polarization is
efficiently pumped by the electric field (much more than
the pulse tuned outside of the ENZ regime) so that it cor-
respondingly increases to the point of triggering the onset
of the nonlinear wave-matter coupling we have discussed
above.

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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Figure 4 Mechanism supporting the full potential of the nonlinear wave-matter interaction in the ENZ regime. Spatial profiles of the
dimensionless electric ex and polarization px fields at the time T = 753 of the pulse with e0 = 0.4 and ω̄ = 1.6ω0 (outside of the ENZ
regime) and the pulse with e0 = 4 · 10−1 and ω̄ = ω0 (in the ENZ regime). In the first case the electric field ex is ”large” only at the
regions around the peaks of the wave and the time drift of such regions does not allow the polarization px to increase and to trigger the
nonlinear wave-matter coupling. In the second case, in a physically large volume, the spatially slowly varying character of ex yields the
onset of the nonlinear regime. (In the plots where axes labels are not reported, the axes labels are those of the first plot of the array.)

6. Conclusion and outlook

In conclusion we have shown that a novel and highly nonlin-
ear wave-matter coupling occurs if the medium’s linear per-
mittivity is very small over the entire electromagnetic field
bandwidth. The realization of the full potential offered by
this nonlinear matter response is due to the spatially slowly
varying character of the electromagnetic field in the ENZ
regime. In fact, the ENZ regime produces more efficient
coupling between the electric field and the medium polar-
ization field by enlarging the effective portion of the bulk
hosting the nonlinear interaction. Unlike most strategies
proposed to date in literature in order to achieve a highly
nonlinear response, the nonlinear regime we have discussed
here is not triggered by either cavity effects or by large non-
linear coefficients. The strategy we have outlined is simpler
and more suitable to be exploited in a number a different
configurations since it requires only that the field’s main
frequency coincides with a zero-crossing-point of the real
part of the dielectric permittivity, preferably at the cross-
ing point where absorption may be neglected. In addition,
in view of such flexibility, the nonlinear coupling we have
discussed may be triggered even in the presence of other
mechanisms that are known to enhance matter-wave cou-
pling, thus likely to produce additional hitherto unknown,
highly nonlinear effects. For example, the enhancement of
the field component normal to the surface between vacuum
and the ENZ material may be triggered in the scattering ex-
periment considered in this paper simply by confining more
tightly the incoming pulse along the transverse direction.

The simplicity, generality and flexibility properties of
the discussed highly nonlinear regime make it an ideal plat-

form for conceiving a number of applications and a novel
generation of ultra-compact and fast devices for manipu-
lating light. These applications would benefit of a crucial
feature of the discussed regime, namely the onset on non-
linear effects at optical intensities much smaller than those
commonly required in standard nonlinear optical setups.
Therefore we speculate that the methodology proposed in
this paper would trigger a renewed interest in nonlinear
optical effects where the phenomenology is observed even
with low-power laser sources.
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