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Abstract
Recent progress in photonics has led to a renewed interest in time-varyingmedia that change on
timescales comparable to the optical wave oscillation time.However, these studies typically overlook
the role ofmaterial dispersion that will necessarily imply a delayed temporal response or, stated
alternatively, amemory effect.We investigate the influence of themediummemory on a specific
effect, i.e. the excitation of quantumvacuum radiation due to the temporalmodulation.We construct
a frameworkwhich reduces the problem to single-particle quantummechanics, whichwe then use to
study the quantum vacuum radiation.Wefind that the delayed temporal response changes the
vacuum emission properties drastically: frequenciesmix, something typically associatedwith
nonlinear processes, despite the systembeing completely linear. Indeed, this effect is related to the
parametric resonances of the light-matter system, and to the parametric driving of the systemby
frequencies present locally in the drive but not in its spectrum.

1. Introduction

Light experiences dispersion as it passes through an opticalmedium, such as the glass in yourwindowor the
water in your glass, and different frequencies appear to be travelling at different rates. On a quantum level, the
vacuum inside the glass is different from the vacuumoutside it. In light of recent studies that return to the
problemof time-dependentmedia [1–8], it is worth asking if dispersion plays an additional, non-trivial, role also
in amediumwhose properties changes with time.

Optical dispersion is of coursewell known, and is accurately described by the theory ofmacroscopic
electrodynamics [9, 10], inwhich one ignores themicroscopicmake-up of themedium, replacing the chain of
absorption and re-emission processes of the constituents (fromwhich the dispersion originates)with a
phenomenological frequency-dependent permittivity ε. This greatly simplifies the problemon a classical level,
but introduces some difficulties when attempting to quantise the theory, as the Lagrangian andHamiltonian of
the theory becomes ill-defined. Consequently,many different approaches have been pursued (a good review of
which can be found in [11, 12] and references therein). On a conceptual level these issues have now largely been
resolved by introducing phenomenologicalmicroscopic degrees of freedom, often in themanner proposed by
Hopfield [13], see for instance thework ofHuttner andBarnett [14] or Philbin [15]. Such phenomenological
microscopic degrees of freedomusually consists of a simplified version ofmedium constituent dynamics (i.e.
microscopic detail), which nonetheless gives the same result at amacroscopic scale. The presence of themedium
directly affects the electromagnetic vacuum, leading toCasimir–Polder forces, as is discussed thoroughly in [16].
Calculations can however become complexwithin these frameworks, especially when introducing time-
dependencies to themedium.

Time-dependent opticalmedia have been the subject of a range of studies, examples of which include
acceleration radiation in a plasma [1], time-refraction [2, 5], andmore generically parametric oscillators [17–26]
and vacuum radiation [6, 7, 27, 28]. It is also closely linked to polariton physics, that is, the physics of collective
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excitations of light-matter systems. These coupled systems offers rich physics that likewise has a rich history
[29, 30]. To name a few, it has been explored in the context of photon fluids inmicrocavities [31, 32], cavity
quantum electrodynamics [33–35], optomechanical systems [36, 37], as well as surface-plasmon polaritons [38].
In this picture, the study of quantumvacuum radiation in time-dependentmedia becomes the study of
polaritons excited from the vacuum state. This has natural links to excitations in temporallymodulated
quantum systems [39], the dynamical Casimir effect [40–42] and quantumfield theory on time-dependent
backgrounds [43–49].Many studies have focused onmicrocavities and exciton-polaritons, see for instance
[50–58], where strong light-matter coupling is possible. However, the phenomenon is not restricted to the
strong-coupling limit, and bulkmediawas studied in for example [27, 59], alongwith surface plasmon-
polaritons in [60, 61].

In this workwewill study the temporalmodulation of bulkmedia, orfibre-like scenarios, atmultiple
frequencies. Specifically, our aim is to developmodels of quantum vacuum radiation relevant for experiments
such as [62] and [63], due to recent progress in photonics as well as experimental interest. In particular, we
examine the role of dispersion, especially with regards to the temporally delayed response, in the production of
photons from the vacuum state due to themedium time-dependence. Interestingly, different physics transpire
depending onwhether it is the light-matter coupling (such as Rabi frequency) or the resonance frequency that is
temporallymodulated. Aswewill discuss, the former acts similarly to direct drivingwhereas the latter, onwhich
wewill focus, is a type of parametric driving.Whilst the spectrumof vacuum radiation is qualitatively similar in
both cases tofirst order in the size of the refractive indexmodulation, this is no longer the case at higher orders
(also discussed in [64]).Wewill therefore focus our attention on non-trivial second order effects, which is a topic
of increasing importance with the advent of so-called epsilon-near-zeromaterials [62, 65–68]where changes to
the refractive index in time can be in the order of unity.Wewill employ amodel formacroscopic
electromagnetismwhere themicroscopic degrees of freedom is treated phenomenologically, in the spirit of
Hopfield [13], and similar to [14, 59, 69, 70]. Thismodel allows to fully account for dispersion andmemory
effects. As a result we uncover a frequencymixingmechanism thatmodifies the spectrumof the emitted photon
pairs.

Usually quantum vacuum radiation is emittedwhen the sumof two polariton frequenciesmatch the
frequencies containedwithin the spectrumof themodulation [51, 59]. In our case, wemodulate the resonance
frequency at ν1 and ν2, and the spectrum is thus strongly peaked around these frequencies. However,multiple-
frequencymodulationswill form an interference pattern in the time domain, which oscillates at frequencies
outside the spectrum.Question then becomeswhether or not energy can be absorbed by this. Interestingly, we
find that frequency-mixed photons appear when the sumof two light-matter quasiparticle frequenciesmatch ν1,
ν2 or n n∣ ∣1 2 . The latter are indeed the beating frequencies. This not only provides a physicalmanifestation of
time-dependentmedia but also provides an additional route for the detection of photons in a background free
environment (i.e. at frequencies that are displaced from those of any inputfields).Whilst frequencymixing is
usually connected to nonlinear processes, here the underlying assumption is that themedium response is at all
times linear. Instead, themixing phenomenon is related to a parametric response of a coupled system. In
particular, wefind that energy can be absorbed from themodulation interference pattern precisely because of
the time-delayed response of themedium. In this process, energy is absorbed from thewave oscillating at ν1,
stored until a (anti)quanta of energy is absorbed by the secondwave oscillating at (−)ν2 (or vice-versa). The total
energy n n∣ ∣1 2 is then emitted in the formof a polariton pair. The latter is related to the ‘superoscillations’
studied in [64], and the ‘bichromatic’ driving brieflymention in [54] can be seen as a special case of this.

Themanuscript is structured as follows: In section 2, we define amicroscopic phenomenological action for
the light-matter system,whose classical equation ofmotion results in a common type of dispersion relation.We
then define polariton branches and quantise using a path integral formalism in section 3. Transition amplitudes
for temporallymodulatedmedia are then discussed in section 4, an in-depth example of whichwe treat in
section 5. Discussion of themethods and concluding remarks are then presented in section 6.

2. Themodel and effective action

It is well-known that the dispersive response of themedium complicates calculations. The origin of this
complexity is the two distinct types of time dynamics at interplay: optical parameters that changewith time, as
well as the time-delayed response of themedium. The time-delayed response is directly connected to dispersion,
as the rate at which themedium constituents absorb and re-emit light depends on the frequency. Such
frequency-dependence of the response implies, by necessity, that theHamiltonian/Lagrangian is nonlocal in
time. Themedium is therefore characterised, in the time-domain, by amemory kernel connecting past events
with the present [9, 10, 71]. In the context ofmacroscopic electromagnetism, a time-dependentmedium is
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introduced by allowing amodel parameter, such as the resonance frequency, to changewith time. The resulting
time-dependent permittivity is then described by amemory kernel which changes non-trivially with time.

In this work, wewillmodel the opticalmedium as a set of harmonic oscillators Ri with natural oscillation
frequenciesΩi respectively, at a spatial density of ρ. Aswewill see shortly, these oscillation frequencies will act as
the resonance frequencies of themedium.Note, wewill use units such that c=ÿ=ò0=1 for notational
simplicity. Coupling this to electromagnetism by dipole terms, quantified by dipolar coupling strengths qi, yields
the action
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where the natural oscillation frequencies W ( )tx,i
2 can in general be space- and time-dependent. Now, the

electric field is given by j= - ¶ +( )E At , where A andj are the vector and scalar potentials respectively. In
Coulomb gauge, i.e. when  =· A 0, the equation ofmotion for the scalar potential is

åj r  - =· ( )q R 0, 2
i

i i
2

which implies that j r = å q Ri i i. Startingwith the Lagrangian density, defined as ò=S dt , for
electromagnetism and the light-matter coupling,
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and substituting inj from equation (2) leads to
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Since the last term is just quadratic in the oscillatorfields Ri, we can re-diagonalise. Furthermore, this can be
donewithout impacting the formof the action, since the oscillator parameters ρ,Ωi and qi are all
phenomenological, i.e. chosen tofit experimental data.

We therefore arrive at an action describing the electromagnetic vector potential A coupled to a set of
oscillators Ri by a dipole term,where the latter phenomenologically take into account themicroscopic details of
thematter degree of freedom, given by
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where Ri is the position of each oscillator in its potential well and ρ is the density of oscillators. This action is
inspired by theHopfieldmodels employed in [13, 14, 59, 69, 70]. In the case of constant W º W( )tx,i i, wefind
that equation (3) leads to a dispersion relation for the electric field of the familiar Sellmeier form,
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where r=g q
i i
2 2 are the effective plasma frequencies of themedium resonances. This corresponds to a refractive

index

åw
w

= -
- W

( )n
g

1 ,
i

i

i

2
2

2 2

as is widely adopted in the optics literature [72]. In otherwords, the above action is a suitable starting point for
modelling any dielectric where absorption is negligible. From this we can see that a time-dependentΩi induces
temporal changes in the refractive index.We note that it is however also possible to create a time-dependent
medium through a coupling strength qi that depends on time. This has been studied in various scenarios,
referred to as a time-dependent Rabi frequency, andwewill not delve deeply into this scenario here. Already at
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this stage we can see, from the above action (equation (3)), that such a time-dependence will actmore akin to a
direct driving force than a parametric drive.

Similarly to [69], wewant to compute an effective action for the photons, [ ]S Aeff , by integrating out the
oscillator degree of freedom. Schematically, we do this by computing

 ò= + +g[ ] ( [ ] [ ] [ ])iS eA Rexp ,i
i S S SA R A R

eff
,R i iint

with the boundary conditions = =( ) ( )t tR x R x, , 0i i i f , as we are not interested in the dynamics of Ri. In this
path integral we integrate over each possible configuration of the oscillator positionRi as a function of time that
fulfils the stated boundary conditions, as defined in [73]. However, as the coupling in [ ]S A R, iint is linear, it is
easy to show that the quantumfluctuation of Ri does not affect A and is contained in the normalisation constant
 (here set to unity) [73]. Therefore, performing this path integral for Ri with the above boundary conditions is
equivalent to solving the classical equation ofmotions for Ri driven by ˙q Ai [74]. This can be done bymethod of
Green’s functions, that is, by solving

d¶ + W D = - - ¢[ ( )] ( ) ( )t t tx, , 5t i i
2 2

with boundary conditionsD ¢ = D ¢ =( ) ( )t t t tx x, , , , 0i f i i .We can link this to usual optics parameters by
noting that themedium response function, commonly denoted as c ¢( )t tx, , [71], is given by
c ¢ = å ¶ D ¢( ) ( )t t t tx x, , , ,i t i

2 . In other words, substituting
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into [ ]S A R,int yields the effective action for photons. In order tomake thismore tangible, let us also expand the
vector potential in the polarisation vectors = ål l l= AA e1,2 , where d=l l l l¢ ¢·e e , definedwith respect to some
reference vector p such that eλ·p=0.We should note here that since A is completely transverse, so are the
oscillators Ri, and thus satisfy the Coulomb ‘gauge’ condition  =· R 0i . Through this, wefind the effective
action
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whereΔi is the oscillator propagator given in equation (5), with r=g q
i i
2 2 being the effective plasma frequencies

for each resonance respectively.
Since the two polarisations de-couple, wewill fromhere on drop theλ subscript for notational simplicity,

andwork onlywith the scalar quantity ( )A tx, . This is so far general, andwe have specified neither the space nor
the time-dependence of W ( )tx,i

2 . In the next section, wewill consider the case of a static but inhomogeneous set
of oscillators, such that W º W( ) ( )tx x,i i

2 2 . The spatial dependencewill be taken into account by expanding in
an appropriate set of normalmodes ( )u xk , the exact formofwhich depends on the physical situation.

Let us start with the equation ofmotion for the vector potential from equation (6), under the assumption
that the oscillator frequency is time-independent. This is given by
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The goal is now to expand the vector potential in a set of normalmodes
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with appropriate boundary conditions for the situation. In this work, wewill focus on bulkmedia, and as such
there is no spatial dependence on the oscillator frequency (W º W( )xi i). A brief aside into afibre-like scenario
can be found in appendix A. There are nonethelessmultiple ways of expanding in terms of normalmodes for
bulkmedia.

2.1. Planewaves
For bulkmedia, a natural choice of normalmodes are themomentummodes

µ( ) ( · )u ix k xexpk

Herewefind the dispersion relation given by equation (4).
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2.2. Paraxial waves
Inmost experimental scenarios however, the simple planewaves are not accessible, and are instead replaced by
structured paraxial beams. Let us once again consider a homogeneous bulkmediumwhere W º W( )xi i

2 2, but
wherewe restrict equation (7) to the paraxial limit, with the z-direction chosen to be the propagation direction.

In other words, let r=( ) ( )u u z ex ,k
ikz

k with k being themomentum in the z-direction and q k2 12 2 ,
where r is the transverse plane coordinates and q its associatedmomentum. Similarly to [75], we thenfind that
kmust follow the dispersion relation of equation (4), and r( )uk satisfies the paraxial wave equation

r + ¶ =^( ) ( )ik u2 0,z k
2

where ^
2 is the transverse Laplacian. Solutions include the familiar Laguerre–Gaussianmodes andHermite-

Gaussianmodes [76].

3.Quantisation

It is often noted that constructing a quantumfield theory reduces to quantising an infinite set of harmonic
oscillators [73, 77, 78], one for each (commonly continuous) position/momentum. By expanding a field in
terms of suitable normalmodes however, one can take this seriously and proceed to quantise each normalmode.
This is usually donewithin the canonical quantisation scheme, butwewill here use a path integral language.
Whilst this quantisation technique is known for planewaves in vacuum [73, 79], it is not commonly employed
for computations, nor has it been generalised for dispersion. Aswe shall showhere however, we find this
technique particularly suitable for tackling the type of problems addressed bymacroscopic quantum
electrodynamics.

Let us start by re-writing the effective action of equation (6) in the frequency domain, yielding
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where * w w= -( ) ( )A Ax x, , as ( )A t x, is a real quantity. Herewe integrated by parts on the -term andused
thatD ¢( )t tx, ,i is diagonal in the frequency domainwhenΩi is time-independent.We now expand this in terms
of normalmodes, defined such that *ò d=( ) ( )d x u ux xk l kl

3 ,finding
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d

A D Ak
1

2 2
, , 8
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k keff

where * w w= --( ) ( )A Ak k and w( )D k, depends on the particular normalmodes used (see appendix A). As an
example, for planewaves this reduces to equation (4).

The solution of the classical equations ofmotion for each normalmode takes the formof wµ  a( )A i texpk ,
where wa ( )k is given by the poles of w( )D k1 , . This defines the quasiparticles of the system. In other words, by
solving w =( )D k, 0 forω as a function of normalmode label k , wefindN quasiparticle branches. These are
usually referred to as polaritons. The exact number of polariton branches depends on the explicit formof

w( )D k, .Wewill label these branches by the subscriptα, and an example can be seen infigure 1(a). Inspired by
[69], we can do the followingfield transformation

w
w w

w
w w w=

-
=a

a a a( ) ( )
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( ) ( ) ( ) ( )A
D

A A
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k,
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in order to define a polariton action.Note, this transformation is always well-defined as the w( )D k1 , diverges
at the same points and at the same rate as w w- a ( )k2 2 goes to zero. The action of equation (8) is nonlocal in time
(i.e. dispersive) infield-coordinates w( )Ak : by thisfield-transformation, we trade nonlocality in time for
nonlocality in space. This simplifies the quantisation procedure whilst still taking dispersion into account, as
dispersion is now implicit in the definition of the polariton fields and their dependence on themomentum
mode k . Temporal nonlocalities in quantum theory can be treated, but usually at a computational cost since one
must nowdefine a (commonly) infinite set of conjugatemomenta (see for instance the discussions in [80, 81]). A
spatial nonlocality on the other hand, which heremeans that the polariton frequencies wa ( )k contain terms of
higher order than k2, is straightforward to tackle sincewewill treat eachmomentummode k independently.

Written infield-coordinatesAα, and after transforming back into temporal space, the action is that of a set of
complex harmonic oscillator

òå w= -
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This is the actionwithwhichwewill work. Fromnowon, wewill beworkingwith the dynamics of single normal
modes k , sowewill drop the sumover k and corresponding identifier in order to simplify notation. Also, wewill
drop the indexα on all but themode frequency wa for the same reason.

Although this is afield theory, in terms of normalmodes, all the usual techniques from single-particle
quantummechanics apply. This can be quantised in themannermost familiar to the reader. In this work, we
choose a path integralmethod as it allows for a straightforward definition of time-nonlocal perturbation theory.

As is usual in path integral quantisation, wewant to add the driving terms *JA and *J A to the action for
future use. These driving terms physically originate from free currents in the system, i.e. themovements of free
charges.Wewill however not consider physical driving here, but use the driving terms for computational
purposes. After simplifying the notation and adding the driving, the action takes the form

* * *ò w= - + +a[ ] (∣ ˙ ∣ ∣ ∣ ) ( )S J J dt A A J A JA,
1

2
. 11

t

t

eff
2 2 2

i

f

Let us nowproceed by calculating the polariton transition amplitude

* * òá ñ =∣ ( [ ])A t A t A A iS J J, , exp , ,f f i i J eff

wherewe have the boundary conditionA(ti)=Ai andA(tf)=Af. Herewe calculate the probability amplitude
for a polariton in branchα, normalmode k and polarisationλ, starting withfield amplitudeAi at time ti and
transitioning tofield amplitudeAfat time tf

3.
First we note that the quantum fluctuations decouple from the classical dynamics, as the action in

equation (11) is quadratic in the fields. As a consequence, the transition amplitude factorises as ( ) [ ]T iSexp cl ,
where = [ ]S S Acl eff cl is the classical action and the pre-factor ( )T is determined by the quantumfluctuations η.
We here define the quantumfluctuation by splitting thefield into classical and quantum components

h= +A Acl , such that h h= =( ) ( )t t 0i f . Explicitly, this pre-factor is given by
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Wecalculate the classical action using the equation ofmotion alongwith the boundary conditions at ti and tf.
Finally, we find the transition amplitude

*w
p w
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a

⎛
⎝⎜

⎞
⎠⎟∣ ( )[ ]A t A t

i T
e, ,

4 sin
, 12f f i i J

iS J J,cl

where = -T t tf i and the classical action *[ ]S J J,cl is that of a complex driven simple harmonic oscillator. See
appendix B for a detailed calculation. As usual, this expression contains all information required for
computations.

3.1. Connecting polaritons and photons
Thefield transformation in equation (9) also has a physical interpretation. In doing this, we project the photon
field in terms of polariton fields. The expansion coefficients, a generalisation of the co-calledHopfield

Figure 1. (a)Polariton branches of fused silica (solid) in units of c=1, as well as free photon dispersion (dashed). Note that the optical
regime lies between m -–3 20 m 1, whereas themajority of the structure in the spectrum is at higher energy. (b)Overlap coefficient  ak

for the different branches. Note that the value varies between zero and unity depending onwhether a specific branchα can be
characterised as ‘photon-like’ or not.

3
This can be computed in the samemanner as for a simple harmonic oscillator [73, 79], though some extra care should be takenwith the

indices. Note that we do not use the boundary conditionsAf=Ai=0 and the subsequent Lehmann-Symanzik-Zimmermann reduction
formalism [78] here aswe do not necessarily deal with scattering states.
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coefficients [13], are given by  wa( )k . Aswe are always quadratic in the fields, it is convenient to define the
squared coefficients   wºa a( )k k

2 . These are given by





w w
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Herewe have used the fact that the polaritons live on-shell (i.e.ω = ωα), and that
w w w w- W =  -g g( ) ( ) ( )D k,

i i
2 2 2 2 . It can easily be shown that  a0 1k , and corresponds physically

to a factor describing the degree towhich the polariton is ‘photon-like’. In other words, in spectral regionswhere
wa  k, this factor is close to unity, and vice versa. Infigure 1(b), an example of this can be seen.

We should note that in order to go frompolariton observables to photon observables, the field
transformation in equation (9)needs to be undone. In general, integral expressions will comewith factors of  ak

when transforming frompolariton to photon degrees of freedom, although in the actual path integral it can be
absorbed into the normalisation.

4. Transition amplitudes

A time-dependentmedium can generally change the number of polaritons in the system:Quanta can be excited
from the vacuum [44], whose accompanied spectrum is of interest, and like-wise polaritons can be absorbed into
the vacuum. The former is the vacuum radiation. Each process has a transition amplitude a

¬ ( )G t t,mn pq f i
k ,

denoting a transition froma (pq)-statewith p+q polaritons at time ti into a (mn)-state withm+n polaritons at
time tf, whose absolute square gives the associated probability. Herewewillfirst consider this general situation.
Wewill once again drop the k identifier to simplify notation, unless otherwise stated. Throughout this, wewill
use a quantisation box of volume  , as is standard (see [77]), and the normalmodes used take the form

=( ) ·u ex .i
k

k x

Also, we should note that these transition amplitudes are the polariton Fock space propagators. However, wewill
first take a detour into a systemwhere driving is present, as this links directly to a time-dependentmedium in a
perturbative setting.

4.1. Generating functionals
Let usfirst consider a drivenmedium,whose amplitudes will act later as generating functionals when
considering time-dependentmedia perturbatively.Wewill first calculate vacuumpersistence amplitude

¬ ( )G t t,J
f i00 00 , denoted ( )G t t,J

f i00 for notational simplicity. This is given by theGaussian integral

*ò= Y á ñ Y( ) ( ) ∣ ( )G t t d A d A A A t A t A, , , ,J
f i f i f f f i i J i00

2 2
00 00

where *=d A dAdA2 andΨ00(A) is the time-independent version of the groundstate wavefunction seen in
appendix C.Note that in thisA is a complex variable, and not a function. Computing this yields

*ò òw
w= - ¢ - ¢ ¢

a
a

w- a
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )G t t dt dt J t t t J t e, exp

1

4
cos .J

f i
i T

00

As can be expected, this is simply the generalisation of the vacuumpersistence amplitude in [73] to the case of a
complex harmonic oscillator.

However, this calculation becomes increasingly complex for higher energy states, andwewill therefore use a
trick similar towhat is done in appendix C in order to derive the FockwavefunctionalsΨmn. That is, we use the
wavefunctionals

f
w
p

= a w- -a( ) ∣ ∣A e
2

,a
A a 22

and calculate the transition amplitude

*ò f f= á ñ( ) ( ) ∣ ( ) ( )F b a d A d A A A t A t A, , , . 13J f i b f f f i i J a i
2 2

This amplitude can be seen as a generating functional of sort. If we expandfa andfb in terms of the Fock
wavefunctionalsΨmn, we find that
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In this way, we find the transition amplitudes
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where w= + a( )E m n H,mn mn are the complexHermite polynomials given in equation (C1) (also [82–84]), and
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4
.
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t
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f
i

The explicit formof F(b, a)J can be found in appendixD. This captures all processes possible.
We can be a bitmore explicit and ask ourselves what is the amplitude of exciting two polaritons back-to-back

from the vacuum intomode k in branchα:
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4
exp

1

4
cos , 14J i t i t

11 00

wherewe have ignored global phases.

4.2. Time-dependentmedium
Let us now turn our attention to time-dependentmedia. In particular, let us consider a homogeneousmedium
with aweak space- and time-dependent resonance frequencies, i.e. W º W +( ) [ ( )]t f tx x, 1 ,i i i

2 2 where ∣ ∣f 1.
We can then perturbatively construct the oscillator propagators (equation (5)) in orders of ∣ ∣f :

D ¢ = D ¢ + D ¢ + D ¢ +( ) ( ) ( ) ( ) (∣ ∣ )t t t t t t t t fx x x x, , , , , , , ,i i i i
0 1 2 3 . In the frequency domain, this leads to

ò
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The 0th-order is simply the usual propagator, leading to the dispersion relation in equation (4).We can also
relate the shift in oscillator frequency to the change in refractive index through

å åd w d w
w w

= = -
W
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⎡
⎣
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where òi is the characteristic amplitude of fi. Aswewill see below,we can perform the samefield transformation
as before (equation (9)) andwe arrive at the polariton action in equation (10). The higher order propagators
translate into (perturbative) potentials for the polaritons.We cannot however trade the temporal nonlocality of
the higher order potentials for additional spatial nonlocality, because these terms are not diagonal in frequency
space (i.e. w w¢ ¹ - ). Therefore thesewill be temporally nonlocal two-time potentials, also in the polariton field
coordinates. For clarity, let us proceed step-by-step.

Before transforming to the polariton fields we have the effective action

*

*

ò
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w
p
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, ,
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eff

,

wherewe have let w w¢  - ¢ in the second integral, andwe have defined the auxiliary propagator


ås w w ww w w w w¢ = ¢ D ¢ + D ¢( ) [ ( ) ( )] ( )g k k,

1
, , , , . 17

i
i i ik
2 1 2
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Applying the polariton transformation in equation (9) to the above action, and simplifying the notation, yields
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wherewe sumovermomenta ¢k and polariton branches a¢. Also, we have nowdefined the polariton projected
auxiliary propagator s ¢aa

¢
¢( )t t,kk as

 òs
w
p

w
p

w s w w w¢ =
¢

¢ ¢aa w w
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¢ - - ¢ ¢
¢- ¢ ¢( ) ( ) ( ) ( ) ( )t t

d d
e e,

2 2
, , 19i t i t

kk k k k k

with  wa( )k being the polariton projection operator defined in equation (9). This takes the formof a complex
harmonic oscillator, alongwith an additional two-time harmonic potential

* *å s¢ = ¢ ¢
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a
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a
¢ ¢

¢
¢

¢ ¢( ( ) ( )) ( ) ( ) ( ) ( )V A t A t A t t t A t, , , 20
k

k k k k,

which connects the normalmode at k with the one at ¢k . This latter termwewill treat perturbatively, which is
done by computing

*ò òå s
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d
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,

0
i

f
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There are two separate sectors here: either polaritons are excited from the vacuum into the same polariton
branch, or two separate ones.Wewill treat these two sectors separately for clarity, andwill be referred to as
intrabranch and interbranch vacuum radiation respectively. In both cases, we are interested in the probability
amplitude of exciting a polariton pair back-to-back, as illustrated infigure 2.

4.2.1. Intrabranch vacuum radiation
Let usfirst consider the case when a a¢ = in the perturbative potential of equation (20).We can then compute
the necessary functional derivatives to equation (14). This yields


w

s w w
w

s w w s w w s w w s w w s= - - + - +
a

aa
a a

a

aa
a a

aa
a a

aa
a a

aa
a a¬ ( ) [ ( ) ( ) ( ) ( )] ( )

( )

G
i

8
,

1

64
, , , , ,

22

kk kk kk kk kk11 00
intra

2
3

wherewe have expanded to second order for consistency, and considered scattering states where = -¥ti and
= ¥tf .We have also ignored the overall phases. Substituting the auxiliary propagator saa

kk in terms of oscillator
propagators, equations (19) and (17), yields thefinal result:

Figure 2. Schematic of a time-dependentmedium, and back-to-back polaritons generated thereof. The size of themedium represents
the instanteneous permittivity.
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where  is the volume of themedium. It is worth noting that in this process, wherewe consider two polaritons
are emitted back-to-back, themediummodulation fi doesn’t contribute with any additionalmomentum. Thus
it is the homogeneous part of themodulation that is sampled. This is expected, as a pair of back-to-back
polaritons automatically conservemomentum. Secondly, we aremostly interested in a periodicallymodulated
medium, i.e. the dynamical Casimir effect, and therefore the zero frequency response is very small. Hencewe can
safely ignore the second line, which is proportional to ˜ ( )f 0, 0i . As for the vacuum radiation spectrum,we have

two separatemechanisms here. One is a direct emission that depends only on the spectrumof themodulation f̃ ,
this is the first term,whereas the second term explicitly depends on past events due to the integral over axillary
frequency w¢. This latter term allows for vacuum radiation resonances outside the spectrumof themodulation.

4.2.2. Interbranch vacuum radiation
For interbranch vacuum radiationwewillfirst consider a slightly different driven amplitude, since in this case
the two polaritons are distinguishable (at separate frequencies). Instead of equation (14), wemust take the
product of exciting one polariton into each of the branches. Thuswe have
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wherewe have addedα or a¢ identifiers for clarity, andmade sure that the process conservesmomentumby
involving a k and a-k polariton respectively.We can now substitute equation (24) into the perturbative
procedure in equation (21), yielding
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wherewe have already neglected terms that would involve a factor of ˜ ( )f 0, 0i , for the same reason as for the
intrabranch polaritons. Finally, wefind the probability amplitude
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Wewill return to this amplitude shortly, but it is once againworth noting that these interbranch processes open
up the possibility for a variety of frequencymixing processes, as generallyωα and wa¢ are at different frequencies.
The spectrumof vacuum radiation depends directly on the spectrumof themodulation fi, but due to the integral
over w¢ in the second line, also frequencies outside is possible.

4.2.3. Correlators
As a quick aside, it is worthmentioning that correlators can be calculatedwith relative ease. This is done by
applying the appropriate number of additional functional derivatives with respect to J to the transition
amplitude, before setting J=0. For instance, we can calculate thefield-field correlator related to transitioning
fromvacuum to two back-to-back polaritons by
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where Yñ∣ is the ground state ñ∣0 propagatedwith the time-modulated kernel, and S1 is the action seen in the
exponential when calculating the perturbative transition amplitudes in equation (21).We should note that it
would heremake sense not to consider a transition from the vacuumat = -¥ti to an excited state = ¥tf , but
rather from = -t T 2i to =t T 2f , and track the evolution of correlations as t= -T t increases. However
for the sake of brevity, wewill not further discuss correlators in this work.

5. Frequencymixing of vacuum radiation

In this section, wewill explore further the dispersion-inducedmixing processesmentioned briefly in the end of
the last section. Specifically, let us consider a two-frequency time-dependence

 n n= + t-( ) ( )f t t t ex, cos cosi i
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1 2
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In both the intrabranch (equation (23)) and interbranch (equation (27)) sectors, there is an integral over an
auxiliary frequency w¢.We can evaluate thismixing integral in the large τ-limit (i.e.modulating formany
periods), yielding
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wherewe approximated w p t¢ ( )d 2 1 , andwhere a, b both runs over the possible frequencies n n { },1 2 .
This integral becomes significant when w w n n+ = +a a¢ a b, leading to a plethora ofmixed frequency
resonances.

For simplicity, wewill heremodulate the mth-resonance of themedium ( d=i im) for some large time
t wa 1 . Now, recall equation (16), wherewe can relate the size of themodulation i to the change in the
refractive index δn. It is howevermore convenient toworkwith changes to the permittivity ε=n2, whichwe
will denote δε: the two are related through de w w d w= -( ) ( ) ( )n n2 , and thus
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For this type ofmodulation, we see that the intrabranch amplitude can be re-written as
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wherewe denote de de w=w aa ( ), andwherewe as before have truncated the expansion to ( )3 . Similarly, the
interbranch transition amplitude is given by
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It is worth noting that the interbranch resonances are suppressed in general, as they require both branches to be
photon-like simultaneously (so that  a a¢  0k k ). Consequently, the last two termof equation (32) can safely be
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neglected, as they furthermore contribute at the next order in perturbation theory. These additional vacuum
radiation resonances are nonetheless possible.We can now calculate the total excitation probability by

+¬ ¬∣ ∣G G11 00
intra

11 00
inter 2 4 .

Let us at this point specify themedium as fused silica (as infigure 1), and as we are usually interested in
optical frequencies, wewillmodulate the first ultraviolet (Ω2)medium resonance only. Specifically, we let
ν1=Ω2/5 and ν2=Ω2/6, and choose ò such that δn; 10−3 (small but standard for fused silica). The
associated probability spectrum can be seen infigure 3(a), where solid and chequered shading denotes an intra-
and interbranch processes respectively. The polariton branches of interest are shown infigure 3(b), alongwith
the relevantmodulation terms.

As can be seen, the temporalmodulation provides the energy to resonantly connect a polariton branchwith
some antipolariton branch, which causes polaritons to be emitted from the vacuum state. Only theω1 andω2

branches are at a comparable scale to themodulation frequency (∝Ω2), and are thus the only ones intowhich
vacuum radiation is emitted. There are nonetheless several different possibilities, where themodulation energy
willmatch either 2ω2 (intrabranch) orω2+ω1 (interbranch). This opens up for the possibility of frequency-
mixed vacuum radiation, where the frequency of emitted vacuum radiation is given by a combination of the
frequencies present in the system.Note however, that both polaritons in any given pair will however oscillate at
the same frequencywhenmeasured outside the opticalmedium, as they are at the samewavelength, leading to a
measured spectrum such as the one seen infigure 3.

Starting with the intrabranch resonances, we see the two expected dynamical Casimir-like resonances, that
is,ω2=ν1,2/2.However, we also see resonances atω2=ν1,2 as well as at themixed frequency
ω2=(ν1+ν2)/2. The difference frequencywould become relevant when w n n= -∣ ∣ 22 1 2 , which is in the far

Figure 3. (a)Excitation probability of two back-to-back polaritons in time-modulated fused silica, normalised to themaximum
probability 4.4×10−6, as a function of vacuumwavelength. Solid shading represents the intrabranch processes, whereas chequered
shading denotes the interbranch transitions.Herewe chose δn ; 10−3 bymodulating theΩ2-resonance (near-visible-ultaviolet) at
frequencies ν1=Ω2/5 and ν2=Ω2/6 for τ ; 42 fs (100 fs full width at halfmaximum). Each resonance is labelled by the process,
andwe have ignored resonances that are outside the optical/infraredwindow. (b)The polariton branch of interest as a function of
vacuumwavelength. An excitation process always involves a polariton-antipolariton pair, the latter having negative frequency. The
time-modulation then provides the energy connecting the two branches (denoted by coloured arrows). (c) Illustration of the possible
mixing processes at second order in perturbation theory.

4
Note that the total probability density for emission is given by

 ò p
= +¬ ¬( )

∣ ∣dP

d

d k
G G

2
.

3

3 11 00
intra

11 00
inter 2

Also, there is no need for renormalising this integral, as we are considering differences between the occupation in each state, not the total
occupation number in each.
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infrared and is ignored here. Furthermore, the interbranch resonances contribute also, whenω2+ω1=ν1 and
ω2+ω1=ν2, denoted as chequered shadingwith yellow and red solid line, respectively, infigure 3.

This is reminiscent of nonlinear processes, where sumand difference frequency generation is commonplace
[71]. However, the system studied in this work is by assumption linear. In fact, these resonances in the spectrum
of emitted vacuum radiation hasmuch in commonwith the resonances of classical parametric oscillators. It is
known that a stand-alone parametric oscillator with oscillator frequencyΩhas a primary resonance at nW = 2
if driven at frequency ν, and several sub-harmonic resonances atΩ=ν and 3ν/2, and so on, where the strength
of each resonance down the line is significantly weaker than the last [17]. Also, coupled parametric oscillators has
been shown to exhibit a variety of combination (i.e. frequency-mixing) resonances [18, 19, 85], closely connected
to the interbranch processes discussed here.

However, this does not explain resonances of the form w w n n+ = a a¢ ∣ ∣1 2 . The type of frequencymixing
is of a different nature than the ‘combination’ parametric resonances. Instead, themixing relates to the
parametric driving of the systemby the beating pattern formed by the different components of themodulation
(in the time domain), which oscillates at frequencies outside its spectrum. An example of this is the
‘superoscillations’ studied in [64], but is in this case ofmuch familiar origin: the twowaves, n tcos 1 and n tcos 2 ,
beat at (ν1+ν2)/2 and (ν1−ν2)/2. The system is however unable to absorb the energy represented by this
beating pattern directly. Rather it is a two-stage (virtual) process where one quanta of energy is absorbed by the
firstmodulationwave ( n tcos 1 ), which is stored, while the secondmodulationwave ( n tcos 2 ) either adds or
removes another quanta of energy from the system.Note, the removing of energy comes from the absorption of
an anti-quanta of themodulationwave. The total energy is then emitted in the formof two polaritons.

It is worth pointing out that hadwe instead chosen to temporallymodulate the light-matter coupling
strengths gi instead of the oscillator frequenciesΩi, it is easy to see that wewould not getmodifications to the
oscillator propagator seen in equation (15), the last line of which is responsible for the time-nonlocal integral in
equation (28). Instead this would act similarly to a driving force.Wewould indeed alsofind quantumvacuum
radiation in this scenario, and to ( ) look very similar, fulfilling the condition w w n+ =a a¢ r 1,2 for some
integer r [50, 51]. However, we expect the contribution fromboth frequencies of the drive ( n n∣ ∣1 2 ) to
disappear in this case (at least to the same order in ò).

6.Discussion and conclusion

In conclusion, we have studied quantumvacuum radiation excited by temporal changes to the resonance
frequency of an opticalmedium. In particular, we have examined how the dispersive response affects the
spectrumof emitted photons.We studied this with bulkmedia inmind, and specified fused silica as an example.
We found that the delayed temporal response of themedium, responsible for dispersion, introduces frequency
mixing to the system. The spectrumof emitted photons then takes on a character reminiscent of nonlinear
optics, where both sum and difference frequency emission is possible.

Specifically, we showed that photons are emittedwhen the sumof two polariton branch frequenciesmatch a
combination ofmodulation frequencies. This we found led to several quantumvacuum radiation resonances,
including n n∣ ∣ 21 2 as well as the usual dynamical Casimir-like emission at ν1/2 and ν2/2, whenmodulating
themedium at frequencies ν1 and ν2.We note that the system is by assumption linear, as to not confuse this with
a nonlinear phenomenon.We found instead that there are two separate, linear,mechanisms bywhich
frequencies canmix, related either to the energy emission process or the energy absorption process, or a
combination thereof.

Themixing of polariton branch frequencies is a consequence of the nature of coupled systems having
multiplemodes of oscillation, which in this case are the polariton branches. In themost simple case when the
opticalmediumonly has a single resonance frequencyΩ, the twomodes oscillate at frequencies

w = + W +  + W + - W (( ) ( ) )k g k g k
1

2
4 .2 2 2 2 2 2 2 2 2

It follows that any excitation in the system, and hence emitted vacuum radiation,must consist of some
combination ofω+-polaritons andω−-polaritons. In the case of fused silica, there are further branches, whose
algebraic form is considerablymore complicated, but the physics is the same.

On the other hand, themixing of drive frequencies (i.e. the sum/difference frequency peaks) has amore
subtle origin, and is connected to the time-delayed response of themedium to changes in its resonance
frequencies.Wefind that whenmodulated atmultiple frequencies, say ν1 and ν2 simultaneously, themedium
can absorb energy from the beating pattern formed between the twowaves. This process relies on a time-delayed
response to changes in the resonance frequency, as themediummustfirst absorb one quanta of energy fromone
drive (say ν1), and at a later time absorb a (anti)quanta of energy (−)ν2 from the second drive. The total energy of
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n n∣ ∣1 2 is then emitted in formof polaritons, and as such energy conservation requires
that w w n n+ = a a¢ 1 2.

In order to study this, we used amicroscopic phenomenologicalmodel for electromagnetism in an optical
mediumwith a generic Sellmeier dispersion relation.We quantised this using a path integral formalism.No
approximationsweremadewith regards to the delayed response, and dispersionwas therefore fully taken into
account.Within this framework, we induced a time-dependent change to the refractive index n byweakly
perturbing the resonance frequencies ofmedium. Themodel is however extendible to include also temporal
changes to other parameters of the opticalmedium, such as the density and dipolar coupling strengths. It is
worth noting that thismodel relatesmost readily to experiments in bulkmedia, such as in [62, 63, 68], rather
than the typical cavity set-upwhere polariton physics ismore commonly discussed [50–54].

The origin of the time-dependent resonance frequencies has not beenmentioned explicitly in this work, but
has been kept general. Nonetheless, the results are directly applicable to experiments inwhich the temporal
changes to the resonance frequency originates from the quadratic Stark shift (as discussed in [70]), i.e.

gW  W + Ei i pump
2 , for some strong electric field Epump.Whilst thismechanismdoes introduce an actual

nonlinearity to the system,wewant to highlight that this nonlinearity affects the pump beamonly, and the
physics of the quantumvacuumdiscussed here is at all times linear, especially since typical vacuumelectric field
fluctuations are exceedingly weak. Indeed, this is the same line of reasoning as some recent discussion of the
overlap between nonlinear optics andCasimir–Polder physics [86]. Therefore, the framework is applicable to
experiments with strong electric fields propagating in bulk, or structured,media, such as the fibre experiment in
[63]. In the context of these bulkmediawith a strong pumppulse, we expect themixed-frequency quantum
vacuum radiation discussed in this work to be readily observable.Whilst themixing is indeed a second order
effect, the fact that it allows us to shift the frequency of the vacuum radiation to ranges with better detector
efficiencies, such as the optical to infra-red regime [87], greatly improves the observability of quantum vacuum
radiation. Suppose that the fused silica slab in figure 3 is a thinfilm of roughly m100 m thickness, and
considerably larger than the pump laser spot size Aspot in the transverse direction.We can estimate the number
of photon pairs emitted per unit angle dθ as

òq
p
t

p
l

l

= +

+ ´

¥

¬ ¬

¬ ¬
- ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
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intra
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spot
mix

11 00
intra

11 00
inter 2

mix
6

wherewe have in the last step assumed m=A 250 mspot aswell as approximated dk; 2π/τ and
l m 0.65 mmix . This radiationwould be emitted in the orthogonal direction to the pumpbeam (i.e. the
transverse plane). This is the emission per pulse, so a repetition rate of 1 MHz yields roughly three photon pairs
per second, which ismeasurable with current technology [87], given that they can be out-coupled from the
medium (an experimental challenge but not impossible). Importantly, this frequencymixing is off-set from any
other frequency of the system, and is therefore unlikely to befiltered away (a commonproblem for quantum
vacuum radiation).

In addition, the dispersion also allows you to choose towork at frequencies where the physics is sensitive to
small changes to the optical parameters, such as close to the point where the group velocity dispersion is close to
zero (a commonpoint of interest infibre optics [88]). In fact, wewould argue that this is indeed themechanics of
photon pair production in [63], albeit this requires further analysis that is outside the scope of this work.

Another experiment that relies on thismechanism is described in [7], where the refractive index of a thin-
film epsilon-near-zerometamaterial is changed rapidly in time, building on experiments performed in [62, 68].
In light of the present results, additional physics can be expected associatedwith the linear frequencymixing
mechanisms. This work suggests that the probability of emission formixed frequency vacuum radiation to be

dµ( )n 2, where δn is the absolute change of the refractive index. A back of the envelope calculation for the
conditions in epsilon-near-zeromaterials (where δn; 0.9) suggests near unity probability of emitting quantum
vacuum radiationwhere∼20%of the photons emittedwould be frequencymixed. Further study is required
however, since this is clearly not a perturbative change to the refractive index, andabsorption cannot always be
neglected. This present work does nonetheless indicate that rich physics can be explored in the spectrumof
emitted quantum vacuum radiation, especially in experiments with large changes to the refractive index.

Finally, we note thatwe expect this vacuum radiationmixing phenomenon to be rather general, occurring in
any temporallymodulated system that has delayed temporal responses, andwe note also that it is related to the
parametric resonances of the system.

14

J. Phys. Commun. 3 (2019) 065012 NWesterberg et al



Acknowledgments

NWwould like to acknowledge insightful discussionswith JoãoCPintoBarros,HansThorHanssonandFabio
Biancalana.NWacknowledges support fromEPSRCCM-CDTGrantNo.EP/L015110/1.PÖacknowledges support
fromEPSRCgrantNo.EP/M024636/1.DFacknowledgesfinancial support fromEPSRC (UKgrantEP/P006078/2)
and fromtheEuropeanUnion’sHorizon2020 research and innovationprogrammeunder grant agreementNo.
820392 (PhoQus). APacknowledgesfinancial support fromEUHorizons2020 (Marie Sklodowska-CurieActions).

AppendixA.Normalmode expansion in afibre-like scenario

Suppose that the oscillators has aweak space dependence in the transverse plane, i.e.
rW º W = W + D( ) ( ) rxi i

2 2
0
2 2. This describes amediumwhere the refractive index is a function of the

transverse coordinates only rw( )n , , i.e. afibre. As is typical for afibre, let us assume that the index starts at a
background value in the centre and then decrease by a small amount at higher radii. Furthermore, a good
approximation is a parabolic profile if we choose this to be smooth. In the z-direction, we have the usual
momentummodes rµ( ) ( )u u ex ikz

k n , and the transverse dynamics is governed by

r ra- + =^[ ] ( ) ( ) ( )r u E u2 2 , A1k kn n
2 2

where
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plays the role of harmonic frequency and energy respectively in this effective Schrödinger equation. In this, we
expanded for smallΔ. Solutions of equation (A1) are the usualHermite-Gaussian functions
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where r = ( )x y H, , l are theHermite polynomials, and n,m are integers. This also defines our dispersion
relation, as solutions of equation (A1)have to follow
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Herewe note that it is appropriate to treatΔ perturbatively alsowhen solving for polariton branches.

Appendix B. Calculation of transition amplitude

Varying the classical action in equation (11) yields

w+ =a( ) ( ) ( )A t A t J t¨ 2

with the boundary conditionsA(tf)=AfandA(ti)=Ai, and similarly forA*. The solution can be separated into
homogeneous and inhomogeneous parts, AH and AI respectively, where the boundary conditions for the
inhomogeneous part are = =( ) ( )A t A t 0f iI I . This leads to
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By integrating by parts and using the classical equations ofmotion, it is easy to show that

* * * *ò= + + +[ ] [ ˙ ] [ ˙ ] ( )[ ( ) ( )] ( )S J J A A A A dt J t A t A t,
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2

1

2

1

2
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After substituting in the solutions in equation (B1) into equation (B2), we arrive (after some algebra) at
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where c.c. denotes the complex conjugate.
Finally, by splitting the field into classical and quantum components, that is h= +A Acl , one can show that

the transition amplitude is given by
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The normalisation factor remaining can nowbe computed by using the time-translational invariance of the
problem, leading to
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We should note that as T 0, this propagator reduces to the usual

dá ñ = -∣ ( )A t A t A A, , .f f i i J f i

Also, if wewere to at this point add up all normalmodes k , then inmost scenarios the propagator is formally
infinite. This is commonplace for afield theory, and usually demands for renormalisation [78, 79], but these
infinities cancel whenwe consider transition amplitudes.

AppendixC. Photonwavefunction(al)s

Wewill here present thewavefunctionals for polariton states. They take the formofmn-states wherem and n
denotes the number of-k and k photons respectively, and the total number of photons are given bym+n.We
canfirst introduce the complexHermite polynomials *( )H x x,mn given in [82–84]
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leading to a compact formof thewavefunctionals:
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Explicitly, the 0-, 1- and 2-photon states are:
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where∨(i.e. ‘or’) denotes the choice depending onwhat combination of k and-k modes are excited.
Generalising [73], this was derived by first calculating the transition amplitude
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This yields
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where g w= - a( )i Texp . By expanding this in orders of γ, we can derive the coefficientsψm,n(a) given in the
expansion
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We thusfind the coefficientsψm,n(a) for expandingfa(A) in terms of the polariton Fock space state functionals
Ψm,n(A), given by
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With this knowledge, we can nowperform the above expansion and extractΨm,n(A).

AppendixD.Generating functional for transition amplitudes

Herewewill simply state the result of the integral in equation (13):
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