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Abstract

®

CrossMark

The detection and characterization of quantum states of light plays an important role in quantum
science. Traditional methods use single-photon detectors, but these are generally limited to point
measurements; consequently, multi-pixel devices are now being utilized in quantum
measurements, especially in the field of quantum imaging. Here, we demonstrate the capability
of an EMCCD camera to record multiple coincidence events originating from parametric
downconversion where the mean photon number per pixel is much greater than unity. The multi-
pixel nature of the camera enables us to record correlations ranging from =1 to 10 000
coincidences per frame. This approach to quantum measurements provide mechanisms for
recording quantum signatures for bright correlated photon sources.

Keywords: sub-shot-noise, quantum correlations, EMCCD camera

(Some figures may appear in colour only in the online journal)

1. Introduction

The main goals of modern research in quantum mechanics
include the advancement of fundamental physics and har-
nessing its principles to create state-of-the-art technologies.
Cameras with high sensitivity have proven to be very useful
tools in both of these areas. In particular, electron multiplying
CCD (EMCCD) cameras have been used in recent experi-
ments to show strong Einstein—Podolsky—Rosen type corre-
lations [1, 2], indicating in a direct fashion that quantum
physics is non-local [3]. This type of work is also of great
interest in the field of quantum communications as the
information content of the detected state is one of the largest
ever measured in a quantum state of light. Additionally, an
intensified CCD camera has been used to perform real-time
imaging of entangled modes [4]. Moreover, CCD cameras
have been used to perform sub-shot-noise imaging, repre-
senting an improvement over standard imaging when low-
photon-flux is required [5, 6].
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The inherent uncertainty related to Poissonian photon
statistics is often called ‘shot noise’ and is fundamentally
due to the uncertainty relation between photon number and
phase [7]. Traditional monochromatic coherent light sources
are characterized by Poissonian statistics, whereby the var-
iance of the number of generated photons in a time window
is equal to the mean photon number in that same time
window. Sub-shot-noise behavior corresponds to a photon
number distribution that has a lower variance than the mean,
and this behavior is advantageous in situations where the
accuracy on photon number is more important than the
accuracy on the phase. Sub-shot-noise behavior has shown
to be useful for high precision spectroscopy [8], noise
reduction in an interferometer [9] and its application to
direct gravitational wave detection [10-13], and, as men-
tioned above, accurate imaging at low light levels (a few
thousands photons per camera exposure) [5, 6, 14]. Impor-
tantly, Jedrkiewicz et al and Blanchet et al performed
sub-shot-noise correlation measurements of the difference in
the number of conjugate photons in a spontaneous para-
metric downconversion (SPDC) field in the high average-
photon-number regime (about 10 photons per pixel) and
the low-gain regime (about 0.15 photons per pixel),
respectively [15, 16].

© 2017 IOP Publishing Ltd  Printed in the UK
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Figure 1. Generating entangled photons via SPDC. Experimental
setup used to measure sub-shot-noise correlations. The EMCCD
camera is in the far-field of the BBO crystal.
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The ability to detect spatial correlations is important for
the characterization of sources of spatially entangled photons,
and cameras have been widely used to measure spatial cor-
relations in two-photon states generated through SPDC
[1, 2, 15, 17-22]. Various studies have shown that efficient
CCD cameras allow for the detection of multiple correlated
events per frame [15, 17, 19-22].

In this paper, we report coincidence counts ranging from
1 to 10000 pairs per frame measured with an EMCDD
camera, thus making the bridge between the regime of a few
events to a large number of events per exposure. We build a
model of the number of coincidences detected by the camera
as a function of its efficiency and utilize this model to cal-
culate the estimated number of coincidences in a given frame.
Moreover, using a calibration independent figure of merit, we
report sub-shot-noise photon statistics of the difference
between the number of photons in correlated pixels.

2. Theory

2.1. Photon number statistics

The SPDC process works through a nonlinear effect inside a x?
crystal, where one pump photon can turn into two photons that
are correlated in both the energy and the momentum degrees of
freedom. Because of momentum conservation, the two photons
of a given pair leave the crystal with opposite transverse
momentum, thus arriving at opposite locations of the SPDC
ring on the camera (figure 1(a)). We denote these locations by
p = (x, y) and q = (—x, —y), where x and y are discrete pixel
numbers with origins in the center of the SPDC ring. In ideal
experimental conditions, the number of photoelectrons n cap-
tured by the camera at these locations would be equal. This can
be expressed mathematically with P(k = 0) = 1, where
P (n, — n, = k) is the probability distribution corresponding to
the difference k between the number of photoelectrons detected
by the two pixels at locations p and q in a given frame. Because
of experimental phenomena such as losses and noise in the
system, the probability distribution P(k) spreads out, thus
increasing its variance o%(n, — n,). Assuming that
(n, — ng) = 0, the variance of P(k) can be expressed as
o?(n, — ny) = ((n, — ny)*). In two-photon experiments, sub-
shot-noise measurements involve a variance o2 (n, — ng) thatis
lower than the mean photon number on the two pix-
els: o%(n, — n,) < (n, + n).

EMCCD cameras are known to introduce a source of
error called ‘excess noise’ in the measurement of the number
of detected photons in a pixel. This type of noise is due to the
stochastic process of multiplying charges and is typically at
least equal to the shot noise [23]. One can take this excess
noise into account by subtracting its variance from
o2 (n, — ng) [15]. Although there exists ways to get around
the excess noise for a low photon flux (~0.15 photon per
pixel) [16], excess noise is inevitable in the regime of more
than one photon per pixel. As we wish to demonstrate the
capabilities of an EMCCD camera in both regimes, we pro-
pose the use of a device-independent figure of merit:

2
K= <—Uz(n” nQ)>7 (1)
o (n, — my)

where o2 (n, — my) is the variance from a shot-noise-limited
process measured with the same device. Here, the numbers 7,
and m,, are taken at opposite locations p and q, respectively,
but from independent frames. Finally, the average is done
over many frames. Equation (1) is device-independent in that
(1) it is independent of the calibration of the camera, and (2)
even in the presence of detector noise, a source that is char-
acterized by sub-shot-noise fluctuations will always yield a
value that is lower than one, x (sub—shot—noise) < 1.

2.2. Coincidence detection

Here we show how to measure coincidence counts with an
EMCCD camera. Since EMCCD cameras cannot be gated
and do not time tag photon arrival, they cannot directly
measure coincidence counts. We thus employ an indirect
approach to measure coincidence counts in a pixel pair at
locations p and q, through the cross-correlation between
pixels p and gq.

In the supplementary information, we show that the
average product of the counts in two correlated pixels is given
by

(npng) = n* (N?), )

where 7 is the detection efficiency of the whole system.
Because the photon-pair-generation statistics are Poissonian,
the variance of the photon pair number, given by
(N?) — (N)?, is equal to the mean photon pair number. We
find that the mean number of coincidence counts measured on
two correlated pixel can be retrieved through their covariance

(np) (ng) = n*(N), 3)

where the averages are performed over many frames. We can
conclude that the covariance is a measure of the number of
coincidences: this result is consistent with the fact that both
photons of a pair need to be detected in order to produce a
coincidence count, thus leading to the n? factor [24]. Cru-
cially, we find that the presence of excess noise does not
impact this result. Further, calibrating the camera is necessary
to obtain a reliable number of coincidences, and our proce-
dure is detailed in the methods section.

¢ = (npng) —
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2.3. Experimental setups

We generate entangled photons through the process of para-
metric downconversion. We pump a 3 mm type-I beta-barium
borate (BBO) crystal with a 7mW 406nm diode laser
(Cobolt). The phase mismatch parameter, which determines
the solid angle of the SPDC ring, is set to approximately
p = —4. We use a low pump power to ensure that we are in
the low gain regime, characterized by Poissonian photon
statistics. We image the far-field of the exit face of the crystal,
where the photons are anti-correlated in their momenta, to the
EMCCD camera (Andor iXon 897) using a 100 mm lens. A
10 nm bandpass filter centered at 812 nm is used to block the
pump and reduce any ambient light.

3. Results

3.1. Sub-shot-noise correlation measurements

Our experimental procedure is similar to those outlined in
references [1, 2, 15, 16]. However, our method for normal-
ization (see methods section) reveal the sub-shot-noise sta-
tistics and the coincidence rate even when the mean number
of photons per pixel is much greater than unity.

The goal of the experiment is to measure spatial corre-
lations and sub-shot-noise fluctuations for a wide range of
mean photon numbers per pixel. The number of photons that
is incident on one pixel is controlled by the exposure time of
the camera, and we find a linear relationship between these
two quantities. The exposure time ranges from 100 us to 1 s,
spanning a range of coincidences per pixel of about 0.001 to
around 100. The full nonlinear relationship betweens these
quantities is shown in the data. At the lower end of this range,
the camera is dominated by noise events, and at the upper end
of this range some pixels are saturated.

3.2. Sub-shot-noise statistics

The EMCCD camera can detect sub-shot-noise photon sta-
tistics over a wide range of exposure times and, by the same
token, mean number of photons per pixel (figure 2). We
measure the value of k, the figure of merit for the level of
noise relative to the mean photon number, as a function of the
camera exposure time (figure 2(a)). Each orange point on the
graph corresponds to a value of x averaged over the illumi-
nated pixels on the ring and over 200 frames, after which the
signal rises above the background noise (figure 2(b)). At
exposure times lower than 1ms, background noise and
blooming—charge spilling over neighboring pixels—are
predominant over the SPDC light, and therefore reduces the
strength of the photon number correlations. At exposure times
higher than 1s, the camera is saturated and can no longer
detect sub-shot-noise fluctuations accurately.

Figure 3 shows the mean number of coincidences per
frame C = Yeycx, fy) as a function of the mean photon

number per pixel (n) = Py, y) /Zx’y 1. For these

calculations, we only sum over the pixels that are illuminated
by the downconverted ring.

We see that there is a close to linear relationship between
the number of coincidences measured by the camera and the
mean photon number per pixel. This results demonstrates the
dynamic range of the EMCCD camera in the context of
quantum correlation measurements. We see that the camera is
able to detect coincidences ranging from 1 to 10 000 per
frame, spanning four orders of magnitude. This result is
enabled by the large dynamic range of the EMCCD, and thus
we are able to take advantage of the fact that the camera can
resolve multiple photons arriving at the same pixel, which is
in contrast to a single SPAD that only gives a binary outcome.
The limitation in the low-photon-number regime is the clock
induced charges and the background noise; the limitation in
the high-photon-number regime is saturation of the signal on
the camera. These limitations shape the nonlinear curve of
coincidence number as a function of exposure time from
figure 3.

4. Discussion

Our results illustrate the range in which current state-of-the-
art EMCCD cameras can be used to measure quantum cor-
relations. Such techniques, where one is able to establish the
presence of quantum phenomena, are fundamental to quant-
um science.

Our method provides a mechanism to detect sub-shot-
noise correlations that are present in a source even when a
detector adds additional noise. In this sense, while we directly
do not record sub-shot-noise correlations in the standard
manner, no shot-noise limited source will yield a x lower than
one. We find that the lowest value for s given the performance
of the EMCCD camera is 0.92. As shown in the appendix, the
expected value for x is 1 — 7/2, where the factor of 2 comes
from the excess noise introduced in the detection process by
the gain of the camera. For a SPAD, the factor of 2 is not
present and therefore, lower values of x can be achieved.
However, the EMCCD provides the ability to detect the whole
SPDC field and spatial correlations, while a SPAD only allows
one to measure local correlations. One limiting factor to the
quality of our results is the heralding efficiency. The measured
heralding efficiency in our experiment is consistent with the
efficiencies that have been observed with prior work using
similar technology [1]. It is clear that maximizing the heralding
efficiency is key to future experiments that use this technology
for quantum measurements.

An EMCCD camera is sensitive enough to measure single
photons and has a large enough dynamic range to detect more
than 100 photons per pixel, as shown in the results section.
EMCCD cameras have a larger dynamic range than photon-
resolving single pixel detectors, which can resolve 1 to about
25 photons [25-28]. However, these single-pixel detectors are
more accurate than EMCCD cameras, which introduce a
Poisson-distributed error called ‘excess noise’. Taking the
excess noise into account increases the accuracy of the esti-
mation of the coincidence counts detected by the camera.
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Figure 2. Full-field spatial sub-shot-noise correlations. (a) The shot-noise limit is equal to unity and is indicated on the scale by the dashed
black line. The blue curve shows that there are no correlations outside the ring from one frame to the next. The orange line indicates the sub-
shot-noise signal inside the ring averaged over 200 frames. The light-colored regions around the solid lines represent the standard deviations
on the results. (b) The three bottom images our figure of merit for every pixel for different exposure times. The signal gradually increases

with exposure time and makes its way above the background noise.

5. Conclusions

We have demonstrated spatial correlations with an EMCCD
camera where the mean photon number per pixel is much
greater than one. Taking the excess noise of the camera intro
account, we provided an analytic method to estimate the
number of detected coincidences per frame. We have also
shown spatial sub-shot-noise correlations without background
subtraction. Our approach allows us to measure photon
number correlations for range of input photon number. This
new approach to quantum correlation measurements will find
uses in applications of quantum imaging and in the mea-
surement of quantum phenomena where multiple photon pairs
are generated simultaneously. It will find applications in the
characterization of sub-shot noise sources whether they emit a
low or high number of photons [29] and application in
quantum imaging [5, 30].
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Appendix

Calibration, or lack thereof, of the EMCCD camera. Cali-
bration of a linear camera involves converting electron counts
e~ to photon number in the following way ¢, , = an,, + [3,
where o and (3 are parameters that are better found experi-
mentally. The figure of merit « is not affected by these
parameters as they cancel out:

((e, —€;)?)

((n, — ”q)2>

((n, — mq)2> ’

“

((e, — )%
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Figure 3. Coincidence data. (a) We sum the number of coincidences over the ring for a given exposure time. At low exposures (< 1 ms), the data
are dominated by blooming noise, whereby saturated pixels spill charges onto its neighboring pixels. (b) At an exposure of 1 ms, we see the

granularity of the ring image. In these conditions, we detect on the order

of one coincidence per frame. (c) The image of the ring gets smoother

as the exposure time of the camera is increased to 10 ms. In this regime, the relationship between number of coincidences per frame and
exposure time is linear as expected. A two-fold increase in exposure time yields close to a two-fold increase in the number of coincidences per
frame. (d) This one-to-one linear relationship disappears at exposure times greater than 100 ms because there is no coincidence signal to be
recovered as the ring approches the limit where it is perfectly smooth: there are no correlated areas on a perfectly smooth surface.

where ¢, represents the electron counts on pixel g from
another frame, such that g, = amy, + (3. Further, as shown in
the appendix, our model of the losses and the excess noise
predicts a value of x = 1 — /2, where 7 is the quantum
efficiency of the whole system.

In order to get a correct value of the coincidence rate
however, we do need to calibrate the camera accurately. We thus
measure the quantum efficiency of the system without the need to
calibrate the camera: n = 2(1 — k). We then compare this value
to the heralding efficiency, which is given by the ratio of the
coincidences to the singles. When the camera is calibrated, the
heralding efficiency should be equal to the quantum efficiency:
HE = ¢/s = 7. For background subtraction, we simply record
the minimum value on the camera and subtract it to the electron
counts. For the multiplicative factor, we use the value that
equalizes heralding efficiency with quantum efficiency. For all
the experiments, the camera gain is set to 1000.

Model of the losses and the excess noise. On one part-
icular pixel pair that we label g and p, we model the statistics

of the source, the losses of the system, the excess noise
introduced by the camera and the calibration of the camera.
We neglect the clock induced charges as they are always
much lower than the singles in our experiment. The following
schematic summarizes the model and our notation

Pairs Losses Excess noise
Source — N — N, —  n,, n,.
. . f P . P q
Poisson Binomial Poisson

As we work in the low-gain SPDC regime, we assume
that the photon statistics of the source are given by a Poisson
process. Hence, the probability that N photon pairs are inci-
dent on pixels ¢ and p is given by

exp(—(N)) ()"

P(N):T,

(%)
where (N) is the average number of photons. Out of these N
photons incident on pixels p and g, only N, and N, are
detected. We model losses with a binomial distribution. The
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probability that N, photons are detected given that N pairs
were generated is given by

P(N,IN) = (1 — p®. (6)

N,!(N — N,)!
Further, given that N, photons were detected on pixel x, the
excess noise introduces a Poisson-type error, such that the
probability that the camera reads out n, photons given that N,
are detected after losses is given by

exp(—=N,)N,"”

!
np!

P (nple) = @)
Equivalently, the probabilities corresponding to the number
of photons n, the camera reads out at pixel g are given by
equations (6) and (7) where we replace the subscript p by g on
every parameter.

We now have the tools to expand P(n,, n,) with the
conditional probability corresponding to the above physical
processes:

P(ny,, ny) = Z P (np, ng|N,, Np)P (N, NyIN)P(N), (8)

Ny, Ngo N
where all sums are performed from 0 to oo, and
PNy, NjJN) =0 when N < max(N,, N,). Since the

processes are independent at different pixels, we write
P (. n\N,, Ny) = P(n,|N,)P(ngIN,) and P (N,, NIN) =
P (N,|N)P (NyIN). We also change the order of the sums to
simplify the calculation of equation (10)

02(n, — ng) = S P(N) 3" P(N,IN)P (N,IN)
N

Ny Ny
X ZP(n,,|N,,)P(nq|Nq) (n, — nq)z. 9)

np g

The result of the sum on (n,, n,) is (N, + N;) + (N, — Nq)z.
We evaluate the second sum on (N,, N,) and find
2N (2 — n). We finally find 6% (n, — n,) = 2(N)n (2 — 7).
Since the average photon counts is 1 (N), the value of the
variance is can never be lower than the shot-noise-limit:

o2(n, — ng) > (n, + ng). (10)

It is thus not possible to observe sub-shot-noise behavior with
an EMCCD camera without subtracting the variance due to
the excess noise, except at very low light levels where excess
noise can be suppressed through thresholding [16].

Sub-shot-noise figure of merit. Our figure of merit x
compares the variance o (n, — n,) of two correlated pixels to
the variance o (n, — m,) of two uncorrelated pixels. To cal-
culate o2 (n, — my), we attribute a different number of gen-
erated pairs (N and M) to the two different frames. In a similar
demonstration to the one for o2, we prove that the shot-noise-
limited variance is given by

o (n, — mg) => P(N)Y P(M) > P(N,IN)P(M,M)
N

M Np.M,

X > P(np|Ny) P (my|M,) (n, — my)>.

np,Ng

(11)

We find 6% (n, — m,;) = 4(N)7. In the case of a Poissonian
two-photon source measured with an EMCCD camera, our

figure of merit x thus yields

2, _
:M:1_3, (12)

o? (n, — my)

where 7 is due to losses and the factor of 2 is attributed to the
excess noise.

Average number of double coincidences. Equation (2) of
the main text can be demonstrated by replacing (1, — nq)2 by
n,n, in the rhs of equation (9).
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