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A fast tracking system is demonstrated that is based on single laser illu-
mination and a few single-pixel single photon avalanche diode (SPAD)
detectors that improves on the previous tracking of non-line-of-sight
motion by a factor of 300 in laser power. With an average illumination
power of only 2 mW, a 15 cm ×15 cm object located up to 2.5 m away
is tracked whilst outside of the direct line-of-sight and moving at
approximately 6 cm/s.
Introduction: The past decade has seen an increase in research devoted
to visualising and locating objects hidden from view [1–11]. The work
of Kirmani et al. [6] showed that a streak camera is able to detect
indirectly scattered light from around a corner. Light imaging, detection
and ranging (LIDAR)-based techniques [1, 3, 5, 11, 12] have been
implemented to reconstruct the 3D structure of an occluded object
from the temporal information retained in diffusely scattered light arriv-
ing back from a hidden scene. Also, using time-of-flight sensing [2, 5, 9,
10] and intensity imaging [7], it is possible to track the motion of an
object moving outside of the direct line-of-sight.

In this Letter, we present a fast tracking system that enables the detec-
tion of moving objects outside of the direct line-of-sight using only
2 mW of laser power. Our active imaging system uses three single-pixel
single photon avalanche diode (SPAD) detectors and a single-pulsed
laser to interrogate a ‘room’ with a hidden object. In a first experiment,
we demonstrate that we can accurately locate the hidden object. In a
second experiment, we demonstrate that we can accurately track the
motion of the hidden object moving in real time. Data is collected and
processed, and the position is updated as the object moves. On the
basis of these results, we claim the feasibility of single-photon counting
(SPC) technology for fast detection and location of moving objects such
as humans or vehicles potentially in real time.

Experimental setup: The ‘room’ in our experiments is a purpose-built
box measuring 102× 102× 76 cm3. Fig. 1 shows a schematic represen-
tation of the room as seen from the outside. Optical access is provided
by a 28× 12 cm2 open window in the front wall (semi-transparent in
this figure but completely opaque in the experiments). The target
object is a 15× 15 cm2 screen, chosen to mimic a broad (extended) scat-
tering object, that we angle at �45° to the rear wall and move along a
designated ground track. The ground track traces out the shape of the
letter ‘E’ and is outside of the field of view of our system. The transcei-
ver comprises a pulsed laser diode (Picoquant LDH-P-780, 780 nm peak
wavelength, 80 MHz repetition frequency, 2 mW average power), a
time-correlated SPC [13] (TCSPC) module (Picoquant HydraHarp
400), three silicon SPAD detectors (Excelitas SPCM-AQRH) and the
associated light collection optics.

Fig. 1 We interrogate room by looking through small open window at rear
wall. Front wall (semi-transparent in this figure in order to visualise
inside of room) obstructs direct vision of hidden moving object. We illumi-
nate a single spot on wall with high-repetition pulsed laser (red) and
detect light scattered back to points on wall where we image each of our
three SPAD detectors (black)

A train of light pulses from the laser diode propagates through the
window situated 55 cm from our system, onto a white surface at the
back of the room (157 cm away from the transceiver), as illustrated in
Fig. 1. The pulses incident on the rear wall of the room scatter and con-
tinue to propagate approximately as an isotropic spherical wavefront
(Fig. 2a). Some of this light reaches the hidden object (screen) and is
scattered back again towards the rear wall. Three discrete positions on
the wall are imaged to the SPADs. The returning light is coupled into
each SPAD through 1 in diameter collection optics and a 105 μm diam-
eter core fibre. The TCSPC module measures the photon arrival times
(64 ps time binning) for the signal returning to each detector and a his-
togram is built up in 1 s of acquisition time over 80 million laser pulses.
We use this temporal information between the laser sync signal and each
SPAD detector signal to reconstruct the position of the hidden object.
Without any loss of generality, we can simply define the point of refer-
ence (origin of the Cartesian coordinate system) in our system to be the
centre of the rightmost pixel point on the rear wall.
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Fig. 2 Target-position retrieval

a Outgoing laser pulses scatter from rear wall to object and back, approximately
as spherical wavefront that propagates in all directions. Inset histogram shows
example of signal recorded for each detector pixel in single data acquisition, after
windowing out laser reference signal and performing background subtraction
b Time extracted from peak position of each histogram after smoothing with soft
lowpass filter (shown in inset) tells us total wall–object–wall distance travelled by
light but not path taken. Bold and dashed lines in schematic representation show
two equivalent paths, corresponding to time extracted from histogram for pixel A.
SPAD detectors image different points on wall and hence record different time
delays. Three semi-ellipses indicate where object could be located based on data
from respective pixels

Position retrieval: We use the histogram position of the peak of the
first-return signal of the laser as our reference ‘start’ time for each
pixel and define the timing of all events relative to this. We then
window the first-return signal out of the histogram in our target-position
retrieval. In our current method, we pre-acquire and subtract a back-
ground signal with the object removed to suppress unwanted signals
and isolate the temporal evolution of the target signal. Alternatively,
we could consider the median background detection or change detection
approaches discussed in [2, 9, 14–16].

For each detector pixel i, we apply a Savitzky–Golay filter to the
windowed temporal histogram to smooth out the background-subtracted
signal (inset in Fig. 2b). We then locate the position of the highest peak
in the return signal corresponding to our scattering source of interest. To
retrieve the target position, we use an extension of the approach outlined
in [2]. In summary, we generate a probability distribution for each of the
single-pixel elements corresponding to

Pi(ro)/ exp − ( ro − rl| | + ro − ri| | − cti)
2
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where c is the speed of light, ri = (xi, yi, zi) is the pixel position,
rl = (xl, yl, zl) is the laser position, ro = (xo, yo) is the position of
the hidden target object and ti is the photon time-of-flight. The dominant
uncertainty s in the retrieval is related to the resolution (256× 128
pixels) of the discretised search area (3× 1.5 m2). To obtain the
location, we take the product of the probability density functions
(PDFs) Pi(ro), which all overlap at the hidden object.

Results: In a first experiment, we place our target object at 11 distinct
positions. We acquire data for 1 s for each position, and then based
on the collected data, determine its position. Fig. 3 shows the joint prob-
ability densities that we retrieve for the hidden object for each measure-
ment. These are overlaid with the ground truth. The agreement between
the PDFs and the object’s true positions show that our system is able to
locate a stationary object of dimensions 15× 15 cm2 situated up to



�2.5 m outside of the direct line-of-sight, and determine its position
with an average precision of +7.0 cm in x and +6.2 cm in y.
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Fig. 3 Experimental results for non-line-of-sight detection. We perform
detection of hidden target object placed at distinct positions along its
ground track. Each coloured curve in graph is joint probability distribution
of object’s retrieved position, whereas corresponding dashed rectangle
shows object’s actual position during measurement. Filled circle with
border indicates mean of each joint PDF

In a second experiment, we investigate the parameters required to
track a moving hidden object. We move the object continuously
around the hidden scene at an average speed of 5.7 cm s −1 for �30 s
and track its motion. Data is acquired in 1 s time slots. At this integration
time, we are able to perform data acquisition followed by target-position
retrieval approximately every 1.5 s, i.e. 1 s acquisition followed by 0.5 s
computational retrieval. The result is a discrete set of the object’s
average position during each data collection period. We show this in
Fig. 4. The reconstructed PDFs are in good agreement with the
object’s motion, bearing in mind that our object has a width over
which it scatters.
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Fig. 4 Experimental results for motion tracking. We perform tracking of
hidden object as it moves around hidden scene. Left frames are taken from
post-experiment recording, with front wall of room removed, of our object
moving along path taken during tracking experiment. Frames on right
constitute set of position updates saved after each data acquisition and
target-position retrieval step

With discretised sampling, a more continuous trace may be obtained
by interpolating between the individual reconstructed positions. This
interpolation problem between two successive observed positions can
be interpreted as a transport problem [17]. Indeed, at each time instant
the reconstructed position represents the PDF of the object position,
which is evaluated on a uniform spatial grid, i.e. the search area
pixels. Consequently, the interpolation is carried out by inferring a
smooth mapping from a given frame or position to the next frame,
and transforming one PDF into another. To estimate this mapping, we
use the method proposed in [18] and select an arbitrary number of tem-
poral steps between the images to be interpolated. The resulting discre-
tised dynamic optimal transport problem, which reduces to a convex
optimisation problem, can then be solved using, e.g. proximal splitting
methods [19]. Here, we use the Douglas–Rachford splitting scheme
[20], studied in [18], where the cost function involved in the minimis-
ation problem is the L2-Wasserstein distance (see [18] for further
details of the algorithm). The result of this interpolation is shown in
Fig. 5.
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Fig. 5 Interpolation of reconstructed positions. We interpolate between
retrieved positions from hidden object tracking. Graph shows summation
of interpolated probability distributions

This last result is interesting mainly in view of the fact that though our
setup is not designed to reconstruct the full 3D structure of the hidden
scene, we may use this approach in real-life situations (e.g. in surveil-
lance applications) to infer some information regarding the layout of
the room from position measurements of the moving object alone. For
example, with prior knowledge of the nature of the moving object (e.
g. a human being), the interpolation obtained after monitoring our
room for a period of time shows that it is possible to determine the
hypothetical layout of the room with a level of accuracy based on the
movement of the hidden object.

Conclusion: Our method builds on the previous work using an SPAD
array [2, 21, 22, 23–26], and by employing a single laser and multiple
SPAD detectors we eliminate the need to scan, thus reducing the data
acquisition time. Working at similar scales to the SPAD camera in
[2], our three single-pixel system already shows many advantages.
The flexibility of single-pixel detection provides an increased field of
view that allows us to detect and simultaneously track with better pre-
cision at longer range. The use of single-pixel detectors also has the
advantage of higher detection efficiency. We have thus reduced the inte-
gration time required for each target-position retrieval to 1 s, and can
update the position of the hidden object every 1.5 s. In particular, the
required average laser power is significantly reduced to just 2 mW.

The scope of the experiments reported in this Letter is not to recon-
struct an image of the scene hidden around an obstacle. Nevertheless,
we show that we can gain some information from the immediate sur-
roundings of a hidden moving object by performing measurements of
its movement alone. This adds valuable information when remotely
assessing a hidden space. The ability to perform fast non-line-of-sight
motion tracking and infer information about the hidden scene using
experimental components that can be made both compact and portable,
takes us one step closer to developing a real-time solution that is usable
for real-life scenarios. Future work will aim to take this to long distance.
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