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Visible or near-infrared (NIR) light propagating in turbid 
media, for example biological tissue or a foggy environment, 
follows a complicated random path due to multiple scatter-

ing. As a consequence, the optical wavefront is severely modified 
and its intensity is rapidly attenuated in propagation. This leads to 
the inability of an imaging system to detect an object that is located 
within and thus obscured by the medium. Recent efforts have also 
been directed at imaging objects that are located behind or embed-
ded in a scattering medium1–3.

Generally speaking, photons propagating in a scattering medium 
can be divided into ballistic, snake and diffusive photons4. Ballistic 
and snake photons propagate with no or very little interaction 
with the scatterers along the direction of the beam. They therefore 
retain their original coherence and most of the image information. 
However, they are also exponentially suppressed and do not survive 
beyond distances of several centimetres in biological or highly scat-
tering tissue. A medium of thickness L is considered to be highly 
diffusive when the transport mean free path μℓ = ∕ ≪′ L1* s , where 
μa and μ ′s are the absorption and reduced scattering coefficients, 
respectively4–8, with typical values for biological tissue that are of 
order μa ≈ 0.05 cm and μ ~′ 10s  cm (ℓ ~ .0 1*  cm)9. The transport mean 
free path represents the distance over which all information on the 
photon’s initial propagation direction is lost. Measurements of light 
transmitted through such a material therefore carry very little or no 
direct image information. Here we focus attention on this propaga-
tion regime.

The first generation of experiments and methods for diffuse 
imaging were developed in the late 1980s and early 1990s, estab-
lishing the boundaries in terms of maximum imaging depth and 
resolution10–14. Successive generations were aimed at medical tests in 
a variety of conditions and also in vivo15–20. The aim of most studies 
in recent years has been towards increasing image contrast, depth 
sensitivity and decreasing acquisition times7,21–23.

In the strongly diffusive regime, light will propagate in the form 
of photon density waves (PDWs), which exhibit many features typi-
cal of standard propagating waves, including interference, diffrac-
tion and also imaging properties. Imaging properties are essentially 
determined by the wavevector associated to PDWs, κ μ= ∕ℓ3 *d a  

(ref. 5). For typical biological tissue, κd ≈ 1 cm−1, thus limiting imag-
ing resolution to transverse dimensions that are of the same order 
of magnitude of the medium thickness; for example, spatial resolu-
tions of the order of 5 cm are achieved in 5-cm-thick samples6,24. This 
can be improved by using computational techniques, for example 
inverse retrieval algorithms5, or by post-selecting data in the tempo-
ral domain25 to achieve resolutions of ~1 cm with realistic scattering 
parameters. We note that, in the latter case, the majority of the tem-
poral information was discarded to filter out data only at one specific 
temporal slice where the spatial resolution was found to be highest.

Combining computational-based time-resolved measurements 
with ultrafast imaging has been shown to be a promising technique 
for retrieving information lost in a highly scattering medium; see, 
for example, ref. 6 for a review. An approach has been introduced 
that builds on all of the temporally resolved data, named ‘all pho-
tons imaging’ (API). API utilizes both spatial and temporal (photon 
arrival time) components of scattered light and has been success-
fully demonstrated to improve the spatial resolution of an object 
hidden behind a turbid medium26.

In all the methods outlined above, the acquired data (images at 
the output plane of the scattering medium) show a clear shadow 
cast by the hidden object that is always clearly visible, even in the 
time-integrated image. The effect of the computational methods, 
including API, is to significantly improve the spatial resolution of 
the acquired image. Pioneering work was performed by Cai and 
colleagues in which the position of 5-mm-sized objects embed-
ded within 60 mm of diffusive medium (2.5 mm transport mean 
free path) was determined using fibre source/detector pairs and a 
streak camera27.

Here we introduce a time-of-flight diffusive optical tomography 
(ToF-DOT) approach to address the problem of imaging an object 
deeply embedded inside a highly scattering medium. Unlike the 
aforementioned methods, we investigate a regime where any signa-
tures, even of the presence of an occluding object within the scat-
tering medium, are too weak to be identified from visual inspection 
of the raw data alone. We use the full spatial and temporal infor-
mation of the photon time-of-flight at each pixel spatial position 
recorded on a single-photon array detector in combination with 
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a computational retrieval method to estimate the hidden object 
shape and position. The ToF-DOT approach allows us to recover 
the shape of a two-dimensional (2D) opaque object hidden inside 
more than 80 transport mean-free-path lengths of diffusive material 
(corresponding to several centimetres of human tissue). We recon-
struct millimetre-sized features and find that both the spatial and 
temporal resolution of the camera are key to achieving these results. 
Moreover, the technique is sufficiently sensitive to allow data acqui-
sition on timescales of the order of 1 s.

Experimental set-up
We aim to reconstruct the shape and location of a 2D object embed-
ded within a diffusive medium by performing spatially and tempo-
rally resolved intensity measurements of femtosecond light pulses 
transmitted through the medium. Our experimental set-up is illus-
trated in Fig. 1. We use a pulsed laser source with a wavelength of 
808 nm, 120 fs temporal pulse duration, 80 MHz repetition rate and 
1 W average power defocused to a spot size with a radius of 2.5 cm, 
thus corresponding to an illumination fluence of 0.5 mW mm−2. 
This illuminates an object inside a medium consisting of two slabs of 
polyurethane foam, each 2.5 cm thick, with absorption and reduced 
scattering coefficients at the illumination wavelength measured 
from a single point, time-resolved measurement to be μa = 0.09 cm−1 
and μ ′s = 16.5 cm−1 (see Methods for details). The material thus has a 
transport mean free path of ℓ = 600*  μm, that is, nearly two orders of 
magnitude smaller than the total thickness of the material, L = 5 cm.

The laser pulses are transmitted through the diffusive medium 
and some of the light is absorbed by a hidden object placed between 
the two slabs. Black tape is used to create hidden targets of differ-
ent shapes, for example letters (A, X), triangles or double lines. The 
transmitted light is collected by a camera composed of a 32 × 32 
array of single photon avalanche diode (SPAD) detectors (com-
mercialized by Photon Force), each operating in time correlated 
single photon counting (TCSPC) mode with 55 ps resolution28. The 
SPAD camera therefore collects 3D data: two spatial dimensions 
with N × N = 32 × 32 pixel resolution and one temporal dimension 
(T = 230 × 55 ps time bins).

The first column in Fig. 2 shows typical examples of time-inte-
grated transmission images measured with the camera for various 
objects with feature sizes of order ~1 cm (shown in the last column). 
We also show time-gated images in the third column, attempting to 
isolate any eventual ballistic photons. The notable feature of these 
images is that in none of these is it possible to visually determine the 
presence (or absence) of an object embedded inside the medium.

Computational retrieval model
As noted above, the material has a transport mean free path 
ℓ = 600*  μm that is two orders of magnitude smaller than the total 

thickness of the material. This places light in the strongly diffusive 
regime, which in turns allows us to model the photon propagation 
inside the diffusive medium using a diffusion approximation29. 
Light within the medium essentially behaves like heat, following the 
steepest descent of the scalar gradient weighted by the diffusivity, 
with an additional loss effect due to photon absorption30. The dif-
fusion equation in the context of photon diffusion is expressed as

Φ μ Φ Φ∂
∂

+ − ∇ ⋅ ∇ =−c t
t

t D t S tr r r r( , ) ( , ) [ ( , )] ( , ) (1)a
1

where c is the speed of light in the medium, r is the spatial posi-
tion, t is the temporal coordinate, Φ tr( , ) is the photons flux, S tr( , ) 
is a photon source and D is a term that includes the absorption 
coefficient μa and the reduced scattering coefficient μ ′s and in this 
work does not depend on r or t: μ μ= + ′ −D (3( ))a s

1. A full deriva-
tion of equation (1) beginning with the radiative transfer equation 
is provided in ref. 30. For the case of a highly localized (in space and 
time) input laser pulse, equation (1) has an analytical solution given  
by ref. 11:
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Here, ′r  and t′ identify the position and time of the input laser pulse. 
Equation (2) describes the evolution of a delta function in time and 
can be applied to an extended light source (see Methods).

The image-retrieval model can be described as an inverse prob-
lem, where the aim is to estimate the shape of the hidden object 

R∈ ×x N N, from the 3D (two spatial dimensions and one temporal 
dimension) observation obtained by the SPAD camera, denoted by 
Y. We have A=Y x( ), where A is the linear operator mapping the 
original 2D image x to the 3D measurements.
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Fig. 1 | Experimental set-up. Layout (left) and photograph (right) of the 
experimental layout. The input laser beam is defocused to a diameter of 
~5 cm and is centred on the embedded target (shapes cut out of black 
tape). A SPAD camera (visible also in the bottom right-hand corner of the 
photograph) is placed on the opposite side of the diffusive slabs to collect 
the transmitted laser light.
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Fig. 2 | Main experimental results. The first column shows the object 
hidden inside the scattering medium. The second and third columns show 
the recorded image of the transmitted laser beam and time-gated on the 
first 10 time bins that are above the noise level, respectively. No discernible 
image is visible, showing that time-gating in an attempt to isolate ballistic 
photons is not successful. The fourth column shows the retrieved object 
images using the technique described in the main text. The fifth column 
shows the original unknown objects (dark pixels correspond either to dead 
pixels or to so-called ‘screamers’, that is, defected pixels with abnormally 
high dark counts).
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The first step is to compute a forward model using equation (2) 
to simulate light propagation from the input plane to the object 
plane and then, after masking with a guess estimate (for example, at 
the first step this can be a simple flat, zero-amplitude distribution), 
propagation from the object plane to the diffuse medium output. 
This numerical solution is then compared to the actual measure-
ment by evaluating a cost function. This function is in turn used 
to modify the shape of the object guess function and is minimized 
through an iterative process of solving the forward model with the 
adapted guess target function. Full details of the forward model and 
iterative cost function minimization are given in the Methods.

Results and discussion
The absorption and scattering parameters of the polyurethane (PU) 
were measured before the experiment by fitting the temporal diffu-
sion to equation (2). Figure  3 shows the raw data measured at a sin-
gle pixel for a medium of total thickness 5.0 cm and 2.5 cm: in both 
cases the coefficients that best fit the experimental data were found 
to be μa = 0.09 cm−1 and μ = .′ −16 5 cms

1. We then placed objects of 
various shape, made out of black tape, at the interface between the 
two slabs of material (as shown in Fig. 1).

Different shapes were tested (the letters ‘A’ and ‘X’ and a triangle). 
Figure 2 shows the results for the three different objects on three 
different rows. As indicated in the figure, the first columns show 
the raw data, as recorded directly on the SPAD camera (imaging the 
output side of the diffusive material), the second column shows the 
background subtracted data (that is, the data after subtracting out a 
measurement taken with the laser off), and the third column shows 
a time-gated image (taken by isolating the first 10 temporal bins 
of data that rise above the noise floor). As can be seen, there is no 
discernible information in these time-gated photons and the images 
actually resemble very closely the total time-integrated images. 
Reducing the number of time bins selected to perform the gating 
leads only to a reduction of the overall signal, with no further infor-
mation on the presence or shape of the occluded object. Finally, the 
last two columns show the retrieved image of the occluded object 
and the actual ground truth for the object. It can be seen that the 
ToF-DOT allows us to correctly assess the presence of the occluded 
object and also provides a good qualitative agreement with the 
actual object shape. Whilst the time-integrated or time-gated cam-
era recordings do not show any distinct shadows and thus do not 
allow us to guess the shape or position of the hidden objects, the 
method is sensitive to the exact position of the object, as shown in 
Fig. 4, which shows an example where the ‘triangle’ is shifted among 
three different positions while everything else (that is, laser illumi-
nation and camera position) remains unchanged. The data for these  
images were acquired at 1.5 s intervals, showing the potential for 
tracking of changes within the medium in real time. We note,  

however, that the retrieval algorithm used to estimate the object 
shape of interest was performed offline. It required a few minutes 
to converge for each image on a standard laptop computer, using a 
Matlab implementation. This could be reduced to sub-second tim-
escales by employing parallel computing methods.

We underline once more that in the operating conditions used 
here (typical, for example, of a thick sample of human tissue, with 
an average scattering length of 15–20 cm−1; ref. 31), standard meth-
ods such as time gating of ballistic or snake photons4 do not allow 
recognition of the shape of any object considered in our experiment. 
Indeed, the 5-cm-thick material of our experiment is equivalent to 
83 transport mean free paths and this effectively eliminates all bal-
listic photons.

As can be seen in these results, in all cases the algorithm strug-
gles to reconstruct features such as sharp edges, with a resolution 
that is limited here to ~0.5 cm. However, we performed a series of 
numerical simulations based on using the forward model with a 
hidden object that is composed of two vertical stripes, 0.5 mm thick, 
5 mm long and separated by 1 mm. These stripes were embedded 
in a diffusive medium with the same μ ′s and μa as in the experi-
ment at a distance of 2.5 cm from the output surface. We then add 
noise to the output image to simulate camera noise and then use 
the data in the ToF-DOF reconstruction algorithm to test the abil-
ity to correctly identify the 1 mm gap between two stripes. These 
tests were performed with increasing spatial resolution (first row 
in Fig. 5; temporal resolution fixed at 55 ps) and temporal resolu-
tion (first row in Fig. 5; spatial resolution fixed at 160 × 160 pixels). 
We can see that increasing the spatial or temporal resolution on the 
camera leads to an increase in the resolution of the final retrieved 
image of the occluded object. In particular, with 55 ps time bins and 
160 × 160 pixels, feature sizes as small as 1 mm are clearly visible.

On the basis of this finding we performed an experiment aimed 
at testing our current spatial resolution capability: two vertical 
stripes (4 mm thickness, 19 mm height) were used, separated by 5, 2 
and 1 mm with a fixed pixel count of 32 × 32. The results are shown 
in Fig. 6, which displays the 2D reconstructions. A good qualitative 
agreement with the ground truth (shaded rectangles) is observed 
for all separations, although at 1 mm separation, clear artefacts start 
to appear, for example the two slits are fused together in the lower 
half. Nevertheless, the retrieval is still able to correctly recognize 
the existence and overall shape/position of the slits. These mea-
surements therefore highlight current limitations of our approach 
(difficulty with highly asymmetric features that have details in the 
sub-mm region) but also the potential to resolve close to mm fea-
tures in the occluded object.

We note that the 55 ps temporal resolution of the camera cor-
responds to 1.5 cm in free space. However, in diffusive propagation 
one should consider the PDW as the wave propagating information 
through the system and this travels at a much slower speed, requir-
ing several nanoseconds to transit 5 cm, corresponding to a camera 
resolution of ~0.5 mm. This simplified reasoning seems to agree 
with our findings that resolution is limited at the millimetre scale. 
In more detail, if we consider the case in which there is no embed-
ded object in the medium, then each pixel on the camera will record 
a temporal profile for the photon arrival times at the output that 
is exactly described by equation (2). Moreover, we know that early 
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Fig. 3 | Single-pixel temporal histograms of the photon arrivals 
transmitted through 2.5 cm (red) and 5 cm (blue) of material. Black lines 
show the best fits with equation (2), with ′μ = 16.5s

 cm−1 used as a fitting 
parameter.
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Fig. 4 | Tracking of a hidden object positioned at different positions inside 
the diffusive medium. Images are ‘captured’ at 1.5 s intervals.
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arrival times correspond to photons taking shorter—that is, more 
direct—paths to the camera, and longer times correspond to pho-
tons that travel longer distances due to multiple scattering effects. In 
the presence of an absorbing object with a spatially extended shape, 
photon paths that intersect the object will be blocked and will there-
fore be absent from the final temporal measurement. This in turn 
will lead to temporal profiles that deviate slightly from equation (2). 
Furthermore, each spatial pixel on the camera is collecting a dif-
ferent subset of photon paths from the medium, so, in general, the 
deviations from the perfect temporal profile equation (2) will vary 
from pixel to pixel. The shape of the object is therefore encoded 
in this spatially varying temporal information. One can no lon-
ger resort to an exact analytical relation to describe the temporal 
profile modifications at each pixel. These are, however, still fully 
determined from the solution of the diffusion equation  (2) when 
including the embedded, absorbing object. The retrieval algorithm 
is therefore iteratively reconstructing the shape of the object that 
best matches the equation predictions to the measured temporal 
modifications of the photon signal at each pixel.

Conclusions
We have proposed a computational imaging technique for detect-
ing hidden objects that are completely immersed in a highly scat-
tering medium. The method relies on the full, spatially resolved, 
ToF information of the photons that are transmitted through the 
medium and recorded with a photon-counting SPAD camera. The  
high sensitivity of the camera allows fast acquisition times on  
the order of 1 s and precise ToF timing. We have shown that, by 
introducing the full ToF information, we can resolve features in the 
1–5 mm range and that this can be improved by increasing both the 

spatial and temporal resolution of the camera. SPAD cameras with 
high spatial and temporal resolution are currently being developed 
that also have improved pixel fill factors32 (~60% compared to the 
~1% used in these experiments) and thus promise even shorter 
acquisition times and higher resolutions. We note that intensified 
charge-coupled device (CCD) cameras are also available with the 
required 100–200 ps temporal resolution and could be used to per-
form similar measurements to those shown here.

This work was carried out under the assumption that the medium 
is homogeneous, which will not in general be true in the case of 
actual biological tissue or organs. Future work will therefore need 
to consider the impact of this, for example by including a detailed 
model of the inhomogeneity in the forward model or by searching 
for methods for adapting the inverse retrieval.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
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Methods
Experiment details. A femtosecond laser source is used to deliver 130 fs pulses at 
808 nm with a repetition rate of 80 MHz and 1 W average power. A small fraction 
is reflected off a beamsplitter to an optical constant fraction (OCF) discriminator, 
while most of the energy is directed towards the scattering medium after the 
beam has been expanded using a diverging lens. On the other side of the sample 
the SPAD camera collects the transmitted light having interacted with both the 
scattering medium and the hidden object placed inside.

The SPAD camera is composed of a 32 × 32 array of SPAD detectors (100 μm 
pitch, 8 μm pixel active area diameter), each operating in TCSPC mode.  
Each individual SPAD can detect the time of arrival of a single photon with  
a time resolution of ~55 ps and impulse response function of 120 ps. The OCF 
output provides the trigger signal for the SPAD camera. The transmitted  
light is imaged to the SPAD array through an 8 mm focal length photographic  
lens (Samyang 8 mm f/3.5 UMC Fish-eye), and the camera is kept at a fixed 
distance such that the corresponding field of view is covering an area larger than 
the hidden object dimensions.

Characterization of the scattering medium. The reduced scattering coefficient 
μ′

s  of the polyurethane foam was estimated using the experimental set-up shown 
in Fig. 1, where the sample consisted of two polyurethane slabs (without any 
hidden objects). The absorption coefficient μa was measured before the experiment 
using a spectrophotometer, but can also be verified from the same time-resolved 
measurement used to estimate μ′

s . The reduced scattering coefficient is estimated 
by comparing the measured temporal broadening and optical delay of a laser pulse 
with the expected model given by the diffusion approximation, equation (2).

Retrieval algorithm. As described in the Computational retrieval model section, 
we denote with R∈ × ×Y N N T the 3D measurements, containing T images of size 
N × N, and described by the following forward model:

A= +Y x W( ) (3)

In equation (3), W is a realization of an additive random noise and 
A R R→× × ×: N N N N T is the observation operator mapping linearly the hidden object 
to the 3D measurements. This operator models the acquisition process described 
in the Computational retrieval model section. The inverse problem defined by 
equation (3) is ill-posed and requires the development of adapted tools in order to 
be solved. During recent decades, optimization techniques have been developed to 
tackle such problems arising in different signal-processing fields33,34. In this context, 
the unknown object is defined as a minimizer of an objective function composed 
of a sum of two terms: the data fidelity term related to the forward model and the 
regularization term incorporating a priori information we have on the target object 
(for example, piecewise constant image). Therefore, we proceed to minimize a 
regularized least-squares criterion defined as

A
C

λ Ψ∥ − ∥ +
∈

†x Y R xminimize 1
2

( ) ( ( )) (4)
x 2

2

where R promotes sparsity of the target object in a basis induced by the operator Ψ 
(for example, wavelet basis35, gradient basis36 and so on). Moreover, the amplitude 
of x is constrained to belong to C R⊂ ×N N. Finally, λ > 0 is the regularization 
parameter balancing the importance of the regularization term with respect to the 
data-fidelity term (least-squares criterion).

To compute the forward propagation A x( ) efficiently, we separate the linear 
projection into two linear operations: computation of the spatio-temporal intensity 
field at the depth of the object and propagation of the light field from the object 
to the observation plane. The former can be performed by an element-wise 
multiplication between the object, or its current estimate, and each temporal 
frame of the light field propagated from the illumination point to the object. This 
only needs to be computed once using equation (2). The latter is computed by 
convolving the result of the previous operation with the point spread function 
given in equation (2). Performing these two operations is significantly more 
efficient than computing the large matrix multiplication representing the full 

forward propagation. In addition, to avoid fitting to noise at the edges of the 
recorded data and consequently causing Fourier transform artefacts when 
performing the aforementioned convolution operations, the measurements fidelity 
term A∥ − ∥x Y( ) 2

2 is minimized only over pixels that experience a signal-to-noise  
ratio in the recorded data Y over a certain threshold. This selection can be 
performed by multiplication with a selection mask M Y( ). The operator A x( ) is 
then computed as

A M Φ Φ= × ⊙ ×x Y t t t t xr r r r( ) ( ) [ ( , ; , ) ( ( , ; , ) )] (5)x x T0 0 out ,0

where ⊙ indicates a convolution, = x y dr ( , , )x 1  is the set of 2D spatial 
coordinates at the illumination-object distance d1, r0 is the illumination position 
at the input surface, = +x y d dr ( , , )out 1 2  is the set of 2D coordinates at the output 
surface, = dr (0, 0, )x,0 1 , R × ×x :T

N N T is constructed by repeating the 2D object 
x in the third dimension T times and M Y( )i j T, ,1:  is one if ∑ ≥Y sk

T
i j k, ,  and zero 

otherwise, with s being a real positive constant.
It is important to emphasize that both R and Ψ † can vary with different 

prior information about x. We use the prior knowledge that the objects 
we wish to image are both piecewise constant and sparse to then employ 
a regularization term composed of two different penalty functions 
λ Ψ λ Ψ λ Ψ= +† † †R x R x R x( ( )) ( ( )) ( ( ))1 1 1 2 2 2 . The first penalty function induces total-
variation (TV) regularization by choosing Ψ =† x D x D x( ) [ ( ), ( )]1 h v , where Dh and Dv 
represent the horizontal and vertical discrete gradients of the image, respectively36. 
This regularization term is given by

∑
Ψ = ∥ ∥

= ∣ − ∣ + ∣ − ∣

†

+ +

R x x

x x x x

( ( ))
(6)

i j
i j i j i j i j

1 1 TV

,
1, ,

2
, 1 ,

2

The second penalty function induces sparsity by minimizing the ℓ1 norm and 
is given by

∑Ψ = ∥ ∥ = ∣ ∣†R x x x( ( )) (7)
i j

i j2 2 1
,

,

To solve the minimization problem, we implement a steepest descent 
algorithm, which iteratively updates a solution x(k) with the gradient of the objective 
function in equation (4) as x(k) = x(k − 1) − aD(k − 1), where D(k − 1) is the numerical 
gradient of the objective function evaluated at x(k − 1) (ref. 37).

Data availability
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Code availability
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