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Abstract
Phonons in a Bose–Einstein condensate can be made to behave as if they 
propagate in curved spacetime by controlling the condensate flow speed. 
Seemingly disconnected to this, artificial gauge potentials can be induced in 
charge neutral atomic condensates by for instance coupling two atomic levels 
to a laser field. In this work, we connect these two worlds and show that 
synthetic interacting gauge fields, i.e. density-dependent gauge potentials, 
induce a non-trivial spacetime structure for the phonons. Whilst the creation 
of effective horizons for phonons solely depends on the flow speed of the 
condensate, this allows for the creation of new spacetime geometries which 
can be easily designed by tuning the transverse laser phase. By exploiting 
this new degree of freedom we show that effectively charged phonons in 
2+1 dimensions can be simulated, which behave as if they move under the 
influence of both a gravitational and an electromagnetic field.

Keywords: analogue gravity, artificial gauge fields, effective spacetime, 
effective charged phonons, Bose–Einstein condensate

(Some figures may appear in colour only in the online journal)

1. Introduction

Analogue gravity has in the recent decades provided us with a powerful simulator of quantum 
fields in curved spacetime. In this discipline, we seek physical systems whose underlying 
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dynamics might be different from gravity, but where an apparent spacetime picture emerges 
for some field in the system [1–3]. Consequently, a quantum field would then behave as though 
it is in curved spacetime. In this way, it is possible to study physics that relies on the spacetime 
structure, but not the gravitational dynamics. Thus, by analogy, effects such as Hawking radia-
tion, the process in which black holes evaporate by emitting thermal radiation, proposed by 
Hawking [4, 5], the related Unruh effect [6], and cosmological particle creation [7, 8] are no 
longer unattainable experimentally. For instance, this has enabled the experimental study of 
the Hawking effect in flowing Bose–Einstein condensates (BEC) [9–11], flowing water [12] 
and nonlinear optics [13], although in the latter the observed radiation might have had a more 
complicated origin. In-depth theoretical studies in BECs [14–21], ultracold fermions [22], 
moving/nonlinear optical media [23–27], rings of trapped ions [28] and superconducting cir-
cuits [29] to name a few, has exposed a multitude of properties of analog Hawking radiation. 
For example, this unveiled the existence of density-density correlations in a BEC with a sub/
supersonic transition [30] that are vital for experimental investigation [9]. Another example 
is the deep connection between seemingly unrelated quantum field phenomena such as the 
dynamical Casimir effect, Hawking radiation and time-refraction [31–33]. Although Hawking 
radiation has held most of the attention of the community, analogue gravity is not restricted to 
this phenomenon alone. For example cosmological particle creation was studied in [3, 34–37], 
and the Gibbons-Hawking effect was examined in [38].

However, so far analogue gravity has been restricted to the study of spacetimes created 
using only one degree of freedom [1–3]. For instance, the current of a BEC has as of yet been 
the sole determiner of the analogue spacetime felt by the phonons propagating in it. In this 
article, we will introduce a second degree of freedom in the form of a gauge potential, by 
which richer physics can in principle be simulated. From an experimental perspective, this 
allows the experimenter to overcome some limitations in spacetime geometry design related 
to the physical velocity of the system. Despite recent progress in creating sonic horizons 
in a BEC [9–11], the fine-tuning of an effective spacetime is still exceptionally challenging 
with current techniques. The reason, apart from the technical aspect, is that velocity profiles 
achievable are always restricted to satisfy the physical constraint provided by the continuity 
equation. By using the degree of freedom introduced by the gauge potential, the effective 
spacetime geometry experienced by phonons can be designed with much more flexibility, 
as it only relies on the phase profile of the laser beam coupling the internal states of atoms, 
which can be chosen almost at will by the experimenter. Synthetic gauge potentials emerge in 
cold-atom systems by for instance coupling the centre-of-mass motion of the particles to their 
internal degrees of freedom with a laser [39, 40]. A Berry connection [41] then emerges in the 
form of a vector potential for the centre-of-mass dynamics. The coupled atomic states must be 
long-lived compared to the characteristic time scales of the investigated analogue phenomena. 
Atomic losses due to spontaneous decay, happening on competing time scales, would over-
whelm the sought physics and eventually destroy the condensate. Working with atomic optical 
transitions, promising candidates could for instance be Ytterbium and Strontium which have 
extremely long lived states of the order of seconds [39]. An alternative route in order to avoid 
spontaneous emission and heating is to use dark states and three-level atoms [39, 42].

In this paper we start from a density-dependent gauge potential, first described in [43], and 
demonstrate how this adds a new degree of freedom to analogue gravity models. We show 
that the nonlinearity of the vector potential introduces a new mechanism for designing effec-
tive spacetime geometries in a condensate. This new degree of freedom is potentially very 
powerful, owing to the design flexibility of effective spacetimes. We then discuss how the 
additional degree of freedom introduced by the nonlinear gauge potential allows us to extend 
analogue gravity beyond what is currently possible. By choosing a particular configuration for 
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the system we show for example that effectively charged particles in 2+1 dimensions can be 
simulated with phonons, which behaves as particles subjected to both a gravitational and an 
electromagnetic field.

This article is structured as follows. In section 2, we introduce artificial gauge fields for 
Bose–Einstein condensates, and in particular discuss density-dependent gauge fields. We 
derive the effective acoustic metric for phonons in a BEC under the influence of density-
dependent gauge fields in section 3. Furthermore, in section 4 we show that the acoustic metric 
can be cast into a Kaluza–Klein framework, and that the phonons acquire an effective charge. 
Finally we discuss the experimental consideration in section 5 and conclude in section 6.

In this work, we will be using a (−,+,+,+) metric signature, and spatial vector quantities 
are denoted with boldface typesetting, for instance u = (u1, u2, u3). The magnitude of a spatial 
vector is denoted as u =

√
u · u according to the underlying physical metric in the laboratory 

frame (i.e. not the effective metric), unless otherwise stated. Furthermore, a component of 
a vector will be denoted as uζ for some set of indices ζ. Throughout this work, we will use 
capital Roman indices M, N  to indicate range {0, 1, 2, 3}, whereas Greek indices µ, ν  run 
over {0, 1, 2} and finally use lower case Roman indices i, j to refer to the respective spatial 
components. Furthermore, we will make use of Cartesian coordinates, unless otherwise stated.

2. The physical system

In this section we describe how a density-dependent gauge potential [43–47] can be created 
in a Bose–Einstein condensate. We consider a BEC of two-level atoms, where the collisional 
interactions are modelled by a zero-range pseudo potential. The two internal atomic levels 
are coupled by an external laser. The microscopic N-body Hamiltonian which describes the 
dynamics of the system is then given by [43]

H =
N∑

n=1

[
p2

n

2m
+⊗In + Hint(rn)

]
⊗ IH\n +

N∑
n<�

Gn,� (rn, r�)⊗ IH\{n,�}. (1)

The first term in equation  (1) is the sum of the non-interacting Hamiltonians, with 
pn = − (i/�)∇n and rn the quantum mechanical momentum operator, where ∇ is the stan-
dard nabla operator (e.g. ∇ = (∂x1 , ∂x2 , ∂x3) in Cartesian space with xi being the spatial 
coordinates), and the position of the nth particle. The identity operators IH\{n,�,...} act on the 
subspace which excludes the particles n, �, .... The coupling between the two internal levels 
|1〉 and |2〉 is given by

Hint(r) =
�Ω(r)

2

(
0 e−iφ(r)

eiφ(r) 0

)
 (2)

where Ω(r) is the Rabi frequency which characterizes the strength of the light-matter coupling 
and φ(r) is the phase of the laser phase, both depending in general on position r. We further 
assumed that the laser detuning from the atomic resonance is zero. The second term in equa-
tion (1) represents the two-body interaction between the particles which takes the diagonal 
form Gn,� (rn, r�) = diag [U11, U12, U12, U22] δ (rn − r�), with the coupling constants given by 
Uij = 4π�2aij/m and where aij are the scattering lengths relative to the three different collision 
channels. The Lagrangian is written in terms of the Hamiltonian as

L =

N∏
i=1

(∫
d3ri

)[
Ψ† (i�∂t − H)Ψ

]
. (3)
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Here d3ri is the volume element occupied by the ith particle (Riemann measure of the integral). 
In the limit of weakly interacting atoms, ρia3

ij � 1 (with i, j = 1, 2), the many-body wavefunc-
tion Ψ (r1, r2, ...rN) is written as the symmetrized product of the single particle (pseudo-)
spinor wave function φ(r), which satisfies the normalization condition 

∫
d3r φ†φ = 1, so that 

Ψ (r1, r2, ...rN) =
∏N

i=1 φ (ri). By using this meanfield ansatz for the many-body wave func-
tion, the Lagrangian takes the form

LMF =

∫
d3r

[
ψ† (i�∂t − HMF)ψ

]
, (4)

where we defined the condensate wave function ψ(r) =
√

Nφ(r) and the single particle mean 
field Hamiltonian HMF

HMF =
p2

2m
+⊗I+ Hint(r) + UMF. (5)

Hereafter we will drop the explicit space-dependence from the equations, unless needed for 
clarity’s sake. Here I the 2 × 2 identity operator which acts in the space of the atomic internal 
degrees of freedom. In equation  (5) the operator UMF describes the mean field collisional 
effects, and is given by

UMF =
1
2

(
∆1 0
0 ∆2

)
 (6)

with

∆1 = U11ρ1 + U12ρ2 (7)

∆2 = U12ρ1 + U22ρ2 (8)

where ρi = |ψi|2 is the density of atoms in level |i〉 (i = 1, 2), and ψi the corresponding comp-
onent of the order parameter.

In the weakly interacting limit, the coupling energy �Ω between the internal states can be 
much larger than the collisional mean field shifts. This allows us to treat the meanfield inter-
action as a small perturbation to the atom-light coupling. To first order in O(ρijUij/�Ω) (with 
i, j = 1, 2), the eigenstates can be written as

|χ±〉 = |χ(0)
± 〉 ± ∆1 −∆2

�Ω
|χ(0)

∓ 〉, (9)

where |χ(0)
± 〉 =

(
|1〉 ± eiφ|2〉

)
/
√

2 are the so called dressed states. The interacting dressed 
states in equation (9), represent a basis for the internal Hilbert space of the atoms. The con-
densate wave function |ψ(r, t)〉 can therefore be written as |ψ(r, t)〉 =

∑
i={+,−} ψi(r, t)|χi〉.

Our goal is to describe the center-of-mass dynamics of the atoms whose internal state 
is given by |χ±〉 in equation (9). In order to do that we use the adiabatic assumption where 
ψ∓(r, t) ≡ 0. This assumption is valid as long as the collisionally induced detuning ∆i 
(i = 1, 2) is small compared to �Ω. The projection of the mean field Lagrangian in equa-
tion (4) onto the dressed states (|χ±〉) then results in the Lagrangian

L± =

∫
d3r

[
ψ†
± (i�∂t − H±)ψ±

]
, (10)
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where

H± =
(p − A±)

2

2m
+ W ± �Ω

2
+

U
2

 (11)

is the Hamiltonian describing the dynamics of the ± component of the condensate with 
U = (U11 + U22 + 2U12)/4. The vector potential A± = −〈χ±| p |χ±〉 and the scalar poten-
tial W = |〈χ+| p |χ−〉|2/2m stem from the adiabatic projection of the full system onto one of 
the subspaces spanned by the dressed states.

If we now substitute the dressed states from equation (9) into the expressions for the vec-
tor and scalar potential, together with ∆1 = ρ±(U11 + U12)/2, ∆2 = ρ±(U22 + U12)/2 from 
equations (7) and (8), we obtain, to leading order,

A± = A(0) ± a1ρ±(r), (12)

W =

∣∣A(0)
∣∣2

2m
. (13)

Here we define by m the mass of the atoms, A(0) = −�
2∇φ the single particle component of 

the vector potential, with ∇φ the gradient of the phase φ of the laser beam and ρ±(r) = |ψ±|2 
the density of the dressed state, with ψ± the condensate order parameter. The vector 
a1 = [(U11 − U22)/(8Ω)] ∇φ controls the direction and strength of the first order nonlinear, 
density-dependent contribution.

By minimizing the action S± =
∫

dtL± with respect to ψ∗
±, we obtain a Gross–Pitaevskii 

equation (GPE) for the condensate wave function, of the form

i�
∂ψ±

∂t
=

[
(p − A±)

2

2m
− a1 · j + W + Uρ±

]
ψ± (14)

where a current nonlinearity appears,

j =
�

2mi

[
ψ∗
±

(
∇− i

�
A±

)
ψ± − ψ±

(
∇+

i
�

A±

)
ψ∗
±

]
. (15)

For the sake of readability we drop in what follows the subscript in the quantities defined 
above, that is we write ψ± → ψ  and similarly for A and ρ . The following equations are the 
same weather we consider the (+) or (−) component of the condensate, except for the sign of 
some terms. To distinguish between the two cases we use the convention that upper signs in 
the equations refer to the (+) component, while lower signs refer to the (−) one. The choice 
of working with one or the other component does not affect the generality of the following 
arguments. Working with the (+) or (−) component would be the same provided we exchange 
U11 ↔ U22.

3. Effective metric

The GPE in equation (14) provides the framework from which the effective spacetime felt 
by phonons can be derived. To this aim, we work in the hydrodynamic formalism, and write 
the order parameter in terms of the particle density ρ  and its phase S, as ψ =

√
ρeiS. In terms 

of these quantities, the equation (14) is equivalent to the continuity and the (quantum) Euler 
equations
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∂ρ

∂t
+∇ · (ρv) = 0 (16)

and

�
∂S
∂t

=
�2

2m
∇2√ρ
√
ρ

− �2

2m
(∇S)2 ± 2ρ a1 · v + ρ

(
ρ |a1|2

2m
− U

)
. (17)

Here v = (�/m)∇S − A/m is the physical velocity in the condensate. Phonons represent long 
wavelength excitations of the system above its mean-field component. At the classical level, 
the dynamics of these excitations can be derived by linearizing equations (16) and (17) on top 
of the condensate background. Given the density of particles in the condensate (ρ0) and the 
phase of the order parameter (S0), we include small perturbations in the theory by writing the 
density and the phase as ρ = ρ0 + ρ1 and S = S0 + S1, respectively. Here ρ1 and S1 account 
for small deviations from the condensate component. Retaining only the first order terms in 
S1, and ρ1, and working in the hydrodynamic regime in which the quantum pressure can be 
neglected, the dynamics of the excitations is described by the equation

�S1 ≡ 1√
−g

∂

∂xM

(√
−ggMN ∂S1

∂xN

)
= 0, (18)

where g is the metric determinant, and xM is a set of Cartesian coordinate in the reference 
Minkowski spacetime of the laboratory (remind that capital Latin indices span the full 3+1 
spacetime). This is the equation for a scalar field propagating in a curved spacetime [48] and 
describes the evolution of acoustic fluctuations living in the effective background geometry 
described by the metric gMN tensor

gMN =
ρ0

cs

(
−
(
c2 − v2

0

)
− (v0 ∓ va)j

− (v0 ∓ va)i δij

)
. (19)

Here v0 = �∇S0/m − va is the physical velocity field in the condensate, and va = ρ0a1/m is the 

effective velocity induced by the nonlinear vector potential. Also, cs =
(
c2 − 2va · v0 + v2

a

)
1/2 

is the local speed of sound in the condensate, while c = (Uρ0/m) 1/2 is the value it would take 
in absence of the potential. It is worth pointing out here that, by working in the hydrodynamic 
limit, we neglected dispersive effects in the model. The latter can be taken into account by 
retaining the quantum pressure term in equation (17). In terms of gravity analogue, this would 
lead to a momentum dependence in the metric in equation (19), that is encoded in the value of 
the speed of sound c. We limit the discussion in what follows to considering the low momen-
tum limit of the model, and refer to the literature for what concerns the problems related to the 
‘rainbow’ character of the metric at high momenta [1].

Equation (19) shows that cross terms in the metric, mixing the space and time coordinates 
in the laboratory reference frame, are induced by the nonlinear vector potential. Interestingly, 
the time-time component (as well as the pure spatial components) of the metric is not affected 
by the nonlinear potential, and solely the physical velocity of the condensate is responsible 
for the establishment of an ergo-region and eventually the appearence of acoustic horizons 
in the system [1]. The nonlinear potential thus provides an extra degree of freedom that can 
be exploited in order to design effective spacetimes for phonons. In particular, equation (19) 
reveals that a nontrivial curved spacetime can be induced even for a static condensate, for 
which the physical velocity v0 of particles is zero. Moreover, effects such as cosmological par-
ticle creation [48], or dynamical Casimir effect [49], where the time-dependent mode density 
of the vacuum manifests itself as particle creation, can be relatively easily implemented by 
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simply modulating in time the light-matter interaction parameters, such as the Rabi frequency 
or the detuning. Ultimately, a time-modulation of the light-matter interaction leads to a time-
dependent a1, and thus a time-dependent metric.

We show in the next section how the new degree of freedom provided by the nonlinear 
vector potential can be used to simulate the dynamics of charged particles in two-dimensions, 
moving under the combined influence of both a gravitational and an electromagnetic field.

4. Simulating effectively charged phonons

We start with the metric in equation (19) and make the following time-coordinate transformation

dt′ = dt +
(v0 − va)

c2 − v2
0

· dr. (20)

This is a type of co-moving coordinates, and in this new set of coordinates the dtdxi comp-
onents of the metric are absorbed into the dxidxj  components. Not all metrics can be put into 
this form, but includes interesting cases such as both neutral and charged black holes, see for 
instance the well-known transformation connecting the Schwarzschild and the Gullstrand–
Painlevé metrics [1]. Disregarding the conformal factor, the effective metric seen by phonons 
now reads

ds2 = −
(
c2 − v2

0

)
dt′2 +


δij +

(v0 − va)i√
c2 − v2

0

(v0 − va)j√
c2 − v2

0


 dxidxj. (21)

Let us now define the scalar ϕ2 ≡ (v0 − va)
2
3/(c

2 − v2
0), the two-dimensional vector 

Ai ≡ (v0 − va)i / (v0 − va)3 and the 2+1-dimensional metric hµν = diag
[
−
(
c2 − v2

0

)
, 1, 1

]
 

(note that Greek indexes take the values µ, ν, ... = 0, 1, 2, while lowercase Latin indexes run 
through the corresponding two-dimensional space sector (i = 1, 2)). In terms of these quanti-
ties, the full 3  +  1 metric can be written as

gMN =

(
hµν + ϕ2AµAν ϕ2Aµ

ϕ2Aµ 1 + ϕ2

)
. (22)

Interestingly, if we assume that ϕ2 � 1 (such that 1 + ϕ2 � ϕ2), this metric has the same form 
as the ansatz introduced by Klein [50] in the context of dimensional reduction in the Kaluza–
Klein (KK) theory (up to the conformal factor in equation (19)). Such a theory represents the 
first attempt of pursuing the unification of electromagnetism and gravity, in the framework of 
a more general theory of gravity in higher dimensions [50–52].

One of the simpler implementation of this idea postulates the existence of a hidden fifth 
dimension, whose characteristic scale is of the order of the Planck length, and generalizes 
the Einstein theory of gravity to this higher dimensional spacetime. Electromagnetism then 
emerges upon dimensional reduction of the theory, i.e. ‘compactifying’, or in other words 
integrating out, the extra dimension on a circle [51]. It is worth clarifying that the effective 
metric equation (22) seen by the phonons has of course nothing to do with the KK theory itself 
and its fundamental motivation. We are not looking here at any fundamental theory unifying 
electromagnetism and gravity. Moreover, the effective metric gMN, or in other words, the 2+1 
metric hµν and the vector potential Aµ are not dynamical objects, as is usual in analogue mod-
els. What is of interest here is that the effective metric seen by phonons in the condensate has 
the same form as the KK ansatz, and we expect to see analogous physics at the kinematic level.
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By assuming that the dilaton field (in the KK language) ϕ is constant, and that the metric hµν 
and the vector potential Aµ are both independent of (for instance) the coordinate x3, the effec-
tive metric equation (22) can be seen as a KK metric in a 2+1 physical spacetime, in which the 
role of the extra dimension is played by the third spatial component. Following this reasoning, 
Aµ takes the role of an effective electromagnetic potential for phonons in the 2+1 spacetime. 
Phonons in the x1 − x2 plane of the condensate are thus expected to behave as the fundamental 
excitations of the KK theory. In other words, the phonons in the x1 − x2 plane take on the char-
acter of charged particles subjected to both a gravitational and an electromagnetic field.

To prove this assertion we start from the action

S = −1
2

∫
dtd3r

√
−ggMN (∂MS1) (∂NS1), (23)

from which the wave equation  in equation  (18) can be deduced. The factor g here is the 
determinant of the metric tensor in equation (22), which can also be expressed in terms of the 
determinant of the 2+1 metric tensor h = det [hµν ], as

g = det [gMN ]

= det [hµν ]−1
[(

1
ϕ2 +A2

)
−AµhµνAν

]−1

= hϕ2,

 

(24)

where in this case the inner product in A2 uses the effective metric hµν. Since, by assumption, 
the metric in equation (22) does not depend on the coordinate x3, we can expand S1 in terms 
of a suitable basis {ξn(x3)} in the x3 direction

S1 =
∑

n

sn (xν) ξn(x3). (25)

We consider for simplicity periodic boundary conditions and write the eigenmodes as 
ξn(x3) = eikn

3x3/
√

L, where L is the length of the system in the x3 direction, and kn
3 = 2πn/L 

for n ∈ Z. By inserting this expansion into equation (23) and integrating over x3, we find the 
reduced action in the form

S = ϕ
∑

n

{
− 1

2

∫
dtd2x

√
−h

[(
hµν [(∂µ − ikn

3Aµ) sn]
2
)
−

(
kn

3

ϕ

)2

s2
n

]}
.

 

(26)

It is given by the sum of an infinite number of actions, describing the dynamics of massive 
charged particles in the 2+1 dimensional transverse x1 − x2 plane, and is what is called the 
Kaluza–Klein tower, in the KK numenclature. The values of the effective charges qn and 
masses mn for each mode are set by the value of the momentum of the mode in the x3 direction, 
that is qn = �kn

3, mn = �kn
3/cϕ. The ratio q/m = cϕ, which is related to the cyclotron fre-

quency ωc by ωc = Bq/m, is however the same for all the modes. Whilst other (more compli-
cated) configuration in the x3-direction could have been chosen, this simplest scenario already 
offers some of the hallmarks of KK theory, that is, the previously mentioned Kaluza–Klein 
tower of mass and charge modes.

5. Experimental considerations

For an experimental realisation of the analog gravity effects discussed above, a number of 
criteria must be fulfilled. Firstly, the density-dependent gauge potential relies on the Rabi 
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frequency and the corresponding energy scale to dominate over any collisional interaction 
energies. In practice this means �Ω must be larger than the chemical potential µ of the Bose–
Einstein condensate. Secondly, we need to ensure a suitable choice of atomic states and scat-
tering lengths, such that a non-zero current nonlinearity can be obtained. For this one needs 
U11 �= U22 which, if not readily available, can be achieved using Feshbach resonances. In 
other words, one needs to be in the adiabatic regime, where the dressed states arising from the 
light-matter interaction are not coupled. This not only requires that �Ω � µ, but the atomic 
states must also be long lived. Finally, the nonlinear gauge potential should take some specific 
spatial form in order to emulate a specific spacetime structure in equation (19) or effective 
vector potential in equation (21). Similarly to the proposal in [53], the relevant phase profiles 
required to this purpose can be easily obtained using standard beam shaping technologies.

Let us consider the example of a constant effective magnetic field for the implementation 
of effectively charged phonons on curved spacetime. More complex configurations can be 
obtained by opportunely choosing the space and time dependence of the experimental param-
eters. In what follows we use the cylindrical coordinates (r, θ, z), defined as

r =
√

x2
1 + x2

2, (27)

θ = arctan(x2/x1), (28)

z = x3. (29)

In order to clearly separate the mean-field dynamics from the dynamics of phonons, we tailor 
the laser beam in such a way that ∇φ ∼ (1/r)êθ, with êθ  the unit vector in the tangent direc-
tion. In this case, the zero-order synthetic vector potential gives rise to a zero effective magn-
etic fields for the atoms. We choose the remaining experimental parameters, that is, the Rabi 
frequency and the mean-field coupling constants U11 − U22, in such a way that A = (B/2)r êθ. 
In this way, the corresponding effective magnetic field felt by phonons is constant and equal 
to B. Note here that, if we let U11 − U22 vary in space, we need to suitably shape U12 as well, 
in order to keep the mean-field interaction parameter U constant and ensure that the speed of 
sound cs is homogeneous and the conformal factor in the metric (19) constant.

The curvature of the reduced (2+1) metric hµν is encoded in its time–time component 
h00 = −

(
c2 − v2

0

)
. Let us denote f (t, r) the spacetime profile we want to implement for this 

term. This condition, together with the constraint provided by the definition of the dilaton 
field ϕ (here just a constant), completely determine the spacetime profile of the physical 
velocity v0 in the system. Accordingly, the component of the velocity in the longitudinal 
direction is determined by the condition K (v0 − va)

2
3 = c2ϕf (t, r), where K is some large 

non-dimensional constant in order to ensure that ϕ2 � 1 also. The need of tailoring both the 
longitudinal and transverse components of the physical velocity might be experimentally 
challenging.

To overcome this difficulty we could carefully design the longitudinal component of va such 
that the above constraints are satisfied, keeping the longitudinal component of the physical veloc-
ity constant. This is most easily done by tailoring the profile of the phase of the laser and/or of 
the Rabi frequency. We will here assume it being zero for simplicity in the following. The trans-

verse (the x1 − x2) component v⊥
0  of the velocity takes thus the form 

(
v⊥0

)2
= c2 [1 − f (t, r)]. 

It is this component of the velocity that provides the curvature of the hµν metric in the proposed 

configuration. We require c2
s (or simply c2 if va � c) to be fixed in order to maintain a homo-

geneous conformal factor of the metric throughout space. This constraint can be relaxed in the 
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geometrical acoustic limit (or in other terms in the eikonal approximation) [1], since the physics 
is insensitive to the conformal factor of the metric in this case.

With this choice of parameters, the coordinate transformation in equation (20) takes the 
differential form

dt′ = dt +
1
c

(
ϕ

f (t, r)

)1/2 (
dz +

B
2

r2dθ
)

. (30)

A possible set-up for this is the two-dimensional pancake shaped condensate illustrated in 
figure 1. Here, the phonons living on the plane of the condensate gain an effective mass and 
charge once we populate a mode with a non-null longitudinal momentum. By imprinting an 
asymmetric perturbation in the transverse plane, we excite effectively charged phonons, which 
in the presence of a constant magnetic field will precess with the cyclotron frequency ωc.

The set-up discussed here does not satisfy periodic boundary conditions in the x3 direction, 
but we are still able to excite a plane wave in this direction, providing phonons in the trans-
verse plane with charge and mass. Nonetheless, periodic boundary conditions in (at least) one 
direction required for simple mass/charge modes follows naturally from most experimentally 
available atom traps. For instance, a harmonic trap is indeed cylindrically symmetric. Distinct 
mass and charge modes in the Kaluza–Klein tower for the phonons are therefore well-defined.

More interesting physics can in principle be simulated, and further study needs to be done 
in order to address specific cosmological scenarios. For example, the evaporation of a black 
hole via the emission of massive (and charged) particles in the different KK tower of modes 
can be simulated by creating a (sonic) horizon in the system. Moreover, high intensity effec-
tive electromagnetic fields can be implemented by opportunely tuning the condensate veloc-
ity and the light-matter interaction parameters. This opens the door to investigating the high 
intensity physics of quantum fields, such as the Schwinger pair production [54]. In the ana-
logue case, phonons pair with positive and negative norm are created because of the vacuum 
fluctuations in the system, which are pulled apart by the intense effective field acting on them.

Figure 1. Scheme of the experimental set-up discussed in the text, needed to simulate 
effectively charged phonons in a BEC under the action of a homogeneous effective 
magnetic field. The velocity profile of the physical velocity in the plane of the condensate 
v⊥

0  is used to induce a curvature in the effective metric hµν experienced by phonons in 
the plane of the condensate. The internal states of the two-level atoms are coupled by a 
laser beam, whose phase gradient φ is circularly directed. The Rabi frequency Ω and/or 
the mean-field coupling constants Uij are finally tuned in order to implement a constant 
effective magnetic field on phonons.
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6. Summary and conclusion

We have shown that density-dependent synthetic gauge fields acting on neutral atoms can 
be exploited in order to enrich the physics that can be simulated in a BEC implementation 
of gravity analogues. Such nonlinear fields opens up the possibility of introducing a new, 
independent, and versatile degree of freedom, useful for designing effective spacetime for 
phonons. The structure of this effective spacetime depends on the details of the atom-field 
interaction parameters and can be easily adjusted by designing the experimental set-up. As 
an application of the model, we showed that effectively charged particles subjected to both a 
gravitational and an electromagnetic field can be simulated with phonons. This provides an 
example of the novelty of the model and the enriched physics that the framework of analogue 
gravity is capable to simulate when considering synthetic electromagnetic field. We pointed 
out that non-trivial analogue physics can be simulated even with a static condensate, using 
exclusively the degree of freedom provided by the nonlinear synthetic vector potentials acting 
on the atoms.
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