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Laser pulse analogues for gravity and analogue Hawking radiation

Daniele Faccio*

School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS, UK

(Received 22 August 2011; final version received 25 October 2011)

Intense pulses of light may be used to create an effective flowing medium which mimics certain properties of black
hole physics. It is possible to create the analogues of black and white hole horizons and a photon emission is
predicted that is analogous to Hawking radiation. We give an overview of the current state of the art in the field of
analogue gravity with laser pulses and of its implications and applications for optics.
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1. Analogue gravity

‘Analogue gravity’ is the study of phenomena tradi-
tionally associated with gravitation and general rela-
tivity, by means of analogue models that can be
realised in very different physical systems and that do
not directly rely on gravity at all [1]. Following recent
developments in the field, in this paper we attempt to
give a brief overview of how laser-pulses may be used
to create the analogue of an astrophysical event
horizon. Analogues, as a tool to study the physics of
one system in an often apparently and completely
different system, are certainly not a novelty. Just to
name one recent example, certain features of electron
behaviour in solid state physics have been reproduced
using light propagation in specifically engineered
media, e.g. photonic crystals or optical waveguide
arrays [2]. Some of these results have also led to
significant technological developments in laser physics
and are a clear example of why we should study, or
attempt to study analogue models.

W.G. Unruh first proposed the possibility to
reproduce the space–time geometry of a black hole
by studying sound waves in a flowing medium [3]. If
the flow is accelerated so as to pass from subsonic to
supersonic, then sound waves propagating upstream in
the subsonic region will be slowed down by the
counterflow. As they approach the transition point
from sub to supersonic counterflow they will be slowed
down to zero-velocity, i.e. they will never be able to
penetrate into the supersonic region. They will be
blocked at the point at which the speed of sound and
the speed of the flow become equal. This represents the
analogue of an event horizon surrounding a black
hole, i.e. the point in which the gravitationally induced

flow of space becomes equal to the speed of light [4,5].
However, the analogy goes further than this. The
underlying space–time geometry of a flowing fluid
shows the same features as that of a black hole and
even more impressively, quantum effects arising from
the space–time curvature close to the horizon, such as
Hawking radiation, are predicted to occur also in the
analogue systems. Hawking radiation is the emission
of light, or in general particles, from massive black
holes that shed energy in the process and is often
referred to as black hole evaporation. The existence of
a temperature associated with a black hole was first
anticipated by Bekenstein [6] on the basis of thermo-
dynamic considerations and was later derived by
Hawking in 1974 in terms of a thermal emission and
explained on the basis of a quantum analysis of the
vacuum state in the curved space–time close to the
black hole horizon [7,8]. An intuitive picture of
the process may be drawn by imagining that the
vacuum fluctuation pairs close to the horizon are split
so that the inner photon falls in, usually referred to as
the ‘negative mode’ and the outside photon, or
‘positive mode’, escapes away from the black hole.
Therefore, the outgoing photon cannot return to the
vacuum and it becomes a real entity, gaining energy at
the expense of the black hole. The particularity of
Hawking radiation is that it is predicted to exhibit a
blackbody spectrum with a temperature given by

TH¼
�hk

2pckB
; ð1Þ

where �h is the reduced Planck constant, c is the speed
of light in vacuum and kB is Boltzmann’s constant. k is
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the surface gravity, i.e. loosely speaking, the gravita-
tional acceleration experienced at the horizon. For a
black hole k ¼ c4/4GM*3 6 1048/M m s72, where G
is the gravitational constant and M is the mass of the
black hole. The very idea that such a process may
occur has fascinated researchers for the last 40 years as
can be evaluated by the huge number of published
papers that study various aspects and problems of
Hawking radiation. However, as shown above, TH

scales inversely to the black hole mass and a quick
calculation tells us that the temperature of a typical
black hole is of the order of 1 nK or less. This emission
therefore has little hope of being directly observed
given the surrounding temperature of the Cosmic
Microwave Background which is nine orders of
magnitude higher. The perspective of being able to
possibly observe a similar process, under controlled
conditions in an Earth-based laboratory, even if in an
analogue setting, is truly exciting.

A large number of analogue models have been
proposed in the last few years: acoustic analogues
based on flowing fluids or even in the atmosphere [9],
superfluids, Bose–Einstein condensates, gravity (not to
be confused with gravitational) waves in water, ion
rings and more recently optical analogues based on so-
called luminous liquids (i.e. light propagation in a
regime that mimics a hydrodynamical flow) and on
laser pulses in nonlinear optical media. An overview of
most of these is given in the excellent review paper by
Barceló et al. [1]. Here we will focus attention on the
last analogue model cited in the list, i.e. we will
describe how intense laser pulses propagating in a
dielectric medium may be used to recreate an effective
non-uniform medium that flows at close to the speed of
light and may thus be used to induce an effective
horizon and observe analogue Hawking radiation.

Before moving on, a further comment is due in
response to frequently recurring questions on the
nature of the analogue model at play here. Indeed, it
is often not clear where the applicability of an
analogue model starts and where it ends. So to what
extent may the results obtained in one system be
applied to the other? And is the analogue model useful
in both senses, i.e. in this specific case can optics really
teach us something new about black hole physics? And
are we learning anything new in optics?

The boundary of validity of analogue gravity is
relatively well defined in the sense that it is clear that
any analogue gravity model will only capture black
hole kinematics, i.e. it will describe how waves move
and propagate in the presence of an analogue horizon.
If the metric that determines how the waves propagate
can be identified with that of a black hole, then we do
have a tool with which this propagation may be
studied in the laboratory. However, the dynamics of a

black hole will not in general be correctly modelled by
an analogue model: the dynamics depend on the
Einstein equations and are ultimately related to the
fact that gravity is the driving force behind black hole
evolution. There is no actual gravity in the analogue
models and one must obviously refer to the relevant
hydrodynamic equations (for fluids) or Maxwell
equations (for electromagnetic waves) to model the
analogue system evolution. The question of the
importance of the analogue in one field or the other
is a point that is continuously evolving and under
discussion. At the current state of the art it is not clear
if analogue gravity will be of use to astrophysicists or
cosmologists. Even when considering what is expected
to be analogue gravity’s major breakthrough, i.e. the
possibility to study in detail Hawking radiation, we
must bear in mind that this is an analogue version of
Hawking radiation and does not necessarily imply
anything regarding astrophysical black hole evapora-
tion. Nevertheless, we may still argue that such
analogies are extremely important: they give us the
means to transfer knowledge from one area of physics
to another. In this specific case new discoveries can be
made by comparing how light propagates in a moving
medium with the propagation of light close to a
gravitational event horizon. Even more interestingly,
these concepts can be extended to virtually any kind of
wave propagating in a moving medium such as
acoustic oscillations in flowing fluids or in Bose–
Einstein condensates, polaritons in semiconductor
materials, gravity waves in flowing water etc. All of
these are linked together by the common underlying
analogy with flowing space in a gravitational field. So,
whilst one may argue whether astrophysicists will learn
anything or not from analogue gravity, there appears
to be no doubt that the use of general relativity and the
hunt for Hawking-like radiation in analogue systems is
leading to significant and new discoveries. In the
following we will discuss the new physics that emerge
when considering how a travelling dielectric perturba-
tion interacts with a laser pulse or with the vacuum
state. The physics that emerge are indeed quite unlike
any other known light–matter interactions.

2. Analogue gravity with optics in moving media

The study of light in moving media is certainly not a
novelty and has a relatively long history. As far back as
1818, well before Einstein introduced the theory of
special relativity, Fresnel discovered theoretically that
the speed of light vf in a uniform and flowing medium
depends on the flow velocity v:

vf¼
c

n
þ 1� 1

n2

� �
v: ð2Þ
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Not many years passed and in 1851 Fizeau experi-
mentally verified this prediction. Only after Einstein
developed his theory of general relativity was it
possible to make the first connection between electro-
magnetic waves propagating in dielectrics and in
gravitational fields. The first work in this sense was
developed by Gordon who derived the so-called
Gordon metric that describes how light propagates in
a non-stationary medium and to which we will refer
below [10]. Pham Mau Quam in the late 1950s tackled
the problem of ray optics in moving media [11] yet the
problem of how light propagates in moving media that
also exhibit a velocity gradient attracted little attention
until very recently. Landau and Lifshitz give an
overview of the general problem but explicitly note
that they ‘neglect slight effects due to the possibility of
a velocity gradient’ [12]. It is precisely these ‘slight
effects’ that will be at the centre of the following
discussion. A more recent review of optics in nonsta-
tionary media has been given by Shvartsburg [13] with
particular emphasis on the interaction of light with a
rapidly varying ionisation or plasma. Within a similar
context, Rosanov has studied the ‘parametric’ Doppler
effect in which light interacts with a medium that is at
rest but has time-varying or moving parameters [14,
15]. A tightly correlated phenomenon is the so-called
time refraction, first introduced by Mendonça by
drawing a parallelism between the behaviour of light
at a spatial boundary and a time-varying boundary [16,
17]: as is well known and summarised by Snell’s
relations, when light traverses a spatial (and time-
stationary) boundary separating two media with
different refractive indices, its wave-vector is modified.
In a similar fashion, if the refractive index changes in
time, i.e. there is a ‘temporal boundary’, then the
frequency of light is modified. These ideas were then
extended to account for quantum effects and, of
particular interest in this context, included also the
quantum vacuum and excitation of entangled photon
pairs [18–20].

Over the last 10 years a number of papers have
returned to the problem of light in moving media
within the specific context of analogue gravity and with
the explicit goal of evaluating the analogy between
these systems and gravitational black holes [21–32].
However, it was only recently that Leonhardt pro-
posed an idea by which an experimentally accessible
layout may actually create the conditions required to
observe the analogue of an horizon for light propagat-
ing in a dielectric medium [33].

2.1. Recreating the flow of space

The properties of space and time are conveniently
described in terms of a metric. The metric defines the

elementary length (infinitesimal interval) in terms of
the space and time coordinates at that point and may
be distorted by mass or, as in the case discussed below,
by a flowing medium. The basic metric that describes a
black hole, first derived by Schwarzchild, was later cast
in different form by Painlevé and Gullstrand [34,35].
The Painlevè–Gullstrand metric is

ds2¼ c2 dt2�ðdr�VdtÞ2; ð3Þ

where we are considering only radial trajectories (so as
to eliminate an angular dependence) and

V¼ � 2GM

r

� �1=2

: ð4Þ

Based on these equations we may interpret space as if it
were a fluid that is flowing with velocity V. This is the
basis of the ‘river model’ [5] that allows an intuitively
appealing yet mathematically correct understanding of
how analogue models for gravity work. Figures 1(a)
and (b) schematically show how space flows and falls
into an astrophysical black hole or, under time
reversal, emerges out of what is called a white hole.
The flowing river of space moves in a Galilean fashion
through a flat Galilean background space [5] and we
may define a special point, the Schwarzschild radius,
for which rS ¼ 2GM/c2 and the flow velocity equals c:
beyond this point the flow exceeds the speed of light.
Therefore, because objects moving through the river
must obey the laws of special relativity and their speed
cannot exceed c, it is not possible to escape out of the
black hole once inside rS nor is it possible to penetrate
inside the white hole beyond rS.

On the basis of this reasoning, one may therefore
attempt to construct a laboratory analogue using light
in a flowing medium that recreates a flowing river of
space. The original proposal by Unruh based on
acoustic waves in a flowing fluid has a metric that can
be reduced to a form similar to Equation (3) in which c
represents the speed of sound [3]. However, it is
extremely difficult to imagine a method by which we
may actually induce a flow of matter at speeds that are
close to the speed of light, as required in order to
recreate an analogue optical horizon. One early
proposal by Leonhardt attempted to bypass this
obstacle by using so-called slow light [22, 36]: with
electromagnetically induced transparency or metama-
terials it is possible to slow light down to small
fractions of c. However, the slowing down of light in
these systems primarily affects only the group velocity
whilst it was later realised that the important quantity
for observing particle creation at a horizon is the phase
velocity [36]. Leonhardt recently solved this issue by
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suggesting that the medium itself need not flow at all.
All that is necessary is a localised perturbation of the
refractive index that travels at speeds close to c. So the
medium itself remains at rest in the laboratory frame
and by using nonlinear optics (as described below) we
may create an ultrafast perturbation. Just to fix ideas,
we assume the perturbation to be gaussian-shaped with
positive dn, so that the surrounding refractive index has
some background value n ¼ n0 and then this gradually
increases up to a maximum value n ¼ n0 þ dn. This
perturbation of the dielectric medium is then made to
move at a velocity v that is very close to the speed of
light in the medium c/n0. We may modify
Fresnel’s relation, Equation (2) to account for
the fact that the perturbation is now localised:
vf ¼ c=n0 þ ½1�1=ðn0 þ dnÞ2�v: we can see from this
that an increase of dn in the local refractive index is
indeed equally perceived by light as a local increase in
the flow velocity, i.e. both lead to a slowing down of
the light pulse. If v �> c=n0, the perturbation will catch
up with the light pulse or, in the comoving frame, the
light pulse will be gradually sucked inwards. As the
pulse is sucked in, the refractive index (or space flow
velocity) increases and the speed at which the pulse
falls in towards the perturbation increases. The light
pulse will eventually pass the point xBH of no return at
which u ¼ c/(n0 þ dnBH). This point is the analogue of
a black hole horizon. In a similar fashion, one may
consider the trailing edge of a perturbation with

v �< c=n0: light approaching from behind will catch up
with the perturbation. As it penetrates within the
higher refractive index region it will be slowed down by
the higher refractive index or, equivalently, by the
faster space flow. The pulse will then be blocked at the
point xWH for which u ¼ c/(n0 þ dnWH). This is to all
effects a time-reversed version of the black hole
horizon, i.e. it is the analogue of a white hole horizon.

More precisely, we may consider the Gordon
metric that describes space–time in the dielectric analo-
gue [see below, Equation (7)]. Belgiorno et al. [37] has
shown that by redefining the spatial coordinate, the
Gordon metric in the comoving frame may be re-cast
so that it is formally equivalent to the Painlevé–
Gullstrand metric Equation (3):

ds2¼ c2 dt02�ðd~x0�V dt0Þ2; ð5Þ

where an overall multiplicative (conformal) factor has
been dropped and

V ¼ g2v
n2�1
n

; ð6Þ

where g ¼ 1/(17u2/c2)1/2. This shows that the effect of
the perturbation is indeed formally analogous to that
of a mass and can be viewed in terms of space flowing
with a velocity V that, for a fixed perturbation velocity,
is determined by the local value of the refractive index

Figure 1. The flowing river of space in an astrophysical black (a) and white (b) hole. The black and white hole horizons are the
points at which space flow becomes equal to c. Part (c) depicts the effective geometry induced by a one-dimensional dielectric
perturbation moving from right to left. In the frame comoving with the perturbation, space flows as shown by the arrows. Longer
arrows indicate larger velocities.
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n¼ nð~x0Þ ¼ n0þ dnð~x0Þ. As in the Painlevé–Gullstrand
coordinates, an horizon is formed when the space flow
velocity equals the speed of light, V ¼ c.

Figure 1(c) illustrates the geometry of a one-
dimensional dn perturbation: the arrows indicate the
equivalent flow of space. Interestingly, the flow of
space is such that a single perturbation may recreate
the analogue of both a black hole, on the leading edge,
and a white hole on the trailing edge.

2.2. White holes

Black holes are relatively well-known objects whilst
white holes, also solutions to the Einstein equations,
are less studied due mostly to the fact that there is no
obvious mechanism by which a gravitational white
hole may form. A black hole will trap any incoming
matter or light and forms as a natural consequence of
the gravitational collapse of super-massive stars. A
white hole may eject particles or light until it burns out
and, most importantly it does not appear as the result
of a gravitational collapse. Hawking specifically
addressed this problem [38] and pointed out that
the very nature of Hawking radiation implies that the
black hole is at thermal equilibrium. Then, by the
ergodic assumption, the system is equally likely to pass
through all possible states if observed for a long
enough time, including the time-reversal of any of
those states. In other words, to an external observer a
white hole and a black hole are completely indis-
tinguishable and the emission of a white hole is the
same as that of a black hole with the same mass [38,
39]. So we are justified in studying one or the other
kind of hole (black or white), based on what is most
convenient in a given context. Indeed, if we are
unlikely to observe white holes in the cosmos, these
objects actually turn out to be more the rule than the
exception in the context of analogue gravity. In the
original proposal by Leonhardt and co-workers [33],
the travelling dielectric perturbation is generated by an
intense laser pulse that propagates in an optical fibre.
However, the same nonlinearities that generate the
refractive index pertubation will also distort the laser
pulse through a self-steepening effect that creates a
very sharp shock front on the trailing edge [40–42].
However, as shown in Equation (10) below, only steep
gradients in the perturbation lead to effective horizons
implying that the trailing edge, i.e. white hole horizon
will largely dominate over any effects from the leading-
edge analogue black hole. In what follows we shall
therefore restrict our attention only to the case
analogue white hole horizons.

As a final comment, we note that analogue gravity,
as all analogies, is at the level of a subset of the
mathematical equations. By this we mean that

analogue gravity does not reproduce all of the physics
of gravity. Nor is the analogy expected to reproduce
the exact physics in all aspects. If it did, then it would
no longer be an analogy but rather it would be an
‘identity’. In the specific case described in this paper,
the analogy only goes as far as attempting to reproduce
the kinematics of gravitational event horizons, e.g.
features that are well described by the metric and
resulting geodesics. It cannot reproduce the dynamics,
e.g. the formation or evolution of gravitational black
holes as these depend on the existence of mass and are
described by the Einstein equations. And the Einstein
equations are not reproduced in this analogy. The fact
that gravitational white holes are unlikely objects is a
result of the nature of gravitational dynamics. On the
other hand, white holes are readily formed in optics as
a result of the dynamics of intense light pulses in
dielectric media. The analogy therefore is not connect-
ing the horizon formation dynamics in the two settings
but is only connecting the resulting kinematics, e.g.
how a probe light pulse or how the electromagnetic
vacuum behaves in the vicinity of a horizon once this is
formed.

3. Dielectric white hole metrics and Hawking

radiation

The relevant metric in the dielectric analogue context is
the Gordon metric [10,21,30,37,43],

ds2¼ c2

½nðx�vtÞ�2
dt2�dx2; ð7Þ

where the travelling dielectric perturbation is described
by n(x7ut) ¼ n0 þ dn(x7ut). We may rewrite this in
the perturbation comoving frame by means of a boost:
t0 ¼ g[t7(u/c2)x], x0 ¼ g(x7ut), so that

ds2¼ g2
c2

n2
1� nv

c

� �2� �
dt02

þ 2g2
v

n2
1�n2
� 	

dt0 dx0�g2 1� v

nc

� �2� �
dx02: ð8Þ

The primed coordinates, here and in the rest of this
paper, indicate comoving coordinates. There is an
ergosurface defined by putting the first term (g00) equal
to zero, i.e. for 17nu/c ¼ 0. This ergosurface also
corresponds to an horizon in the 1D þ 1 (i.e. 1 spatial
dimension þ time) case [37] depicted in Figure 1(c)
and exists when

c

n0þ dn
< v<

c

n0
: ð9Þ
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This equation may be read in two different ways:
for a given background index and perturbation ampli-
tude, only perturbations with a certain velocity will
give rise to an analogue horizon. Alternatively, for a
given perturbation velocity and amplitude, only those
frequencies that propagate with a refractive index that
satisfies Equation (9) will experience the effect of the
horizon. Indeed, in general n0 varies with frequency o
due to material dispersion. We note that although
relation (9) was not originally derived from a dispersive
theory, recent models that account also for dispersion
arrive at exactly the same equation (see e.g. [20]) where
n0 ¼ n0(o) is the medium phase index. This equation
therefore represents the fundamental relation against
which one may compare measurements in order to
verify if any observed radiation may be related to the
presence of an horizon. For example, one may vary the
velocity and/or the perturbation amplitude and search
for consistency with Equation (9).

From the comoving-frame metric (8) we may
deduce the equivalent of a surface gravity at the
horizon which is found to be [37]

k¼ g2v2
dn

dx






H

; ð10Þ

where the refractive index perturbation gradient is
evaluated at the horizon H. This relation may then be
substituted into Equation (1) to obtain the actual
temperature predicted for Hawking radiation from the
analogue horizon. Laser pulse induced perturbations
may be extremely steep, with a rise from n0 to n0 þ dn
over a distance of the order of 1 mm or even less. This
leads to temperatures, measured in the comoving
frame, that are easily of the order of 1–10 K, i.e.
many orders of magnitude higher than in any other
system proposed to date.

These formulas only show that if Hawking radia-
tion is emitted by the analogue horizon, then it is
expected to have a certain temperature. A full quantum
electrodynamical model of the perturbation account-
ing for the interaction with quantum vacuum, such as
that developed in [37] is required in order to show that
Hawking radiation is actually emitted from the
horizon. The model starts by considering the electro-
magnetic vacuum states in the absence of any
perturbation and then compares these with those in
the presence of the travelling perturbation. The so-
called Bogoliubov coefficients that express the new
states as a function of the old states can be used to
directly evaluate the number of photons produced in
such a scenario. The result clearly shows a logarithmic
divergence of the phase of the electromagnetic field
under conditions identical to Equation (9) [37]. It is

this phase divergence, as originally pointed out also by
Hawking, that leads to the creation of new modes, i.e.
emission of radiation from the vacuum state. More-
over, this emission is found to follow the expected
blackbody dependence with temperature

T¼ 1

g
1

1�ðv=cÞn0 cos y
TH; ð11Þ

where TH is evaluated from Equations (1) and (10),
and y is the angle of the direction of observation with
respect to the propagation axis of the perturbation.
The multiplicative factor in Equation (11) is simply the
Doppler shift that transforms the temperature from the
comoving frame to the laboratory frame. When viewed
from the forward direction, y ¼ 08, the temperature
measured in the laboratory frame is therefore predicted
to be of the order 1000 K or more [33,37,44].

3.1. Dispersion

In order to create an effective flowing medium we must
perform experiments in a dielectric material of some
kind within which we generate the travelling perturba-
tion. In general in any medium in which we decide to
perform these experiments, the refractive index will
vary as a function of frequency or, equivalently wave-
length. This leads to a qualitative deviation from the
ideal (dispersion-less) case analysed by Hawking. In
Figure 2(a) we show the phase velocity of light with no
dispersion (it is thus constant at all wavelengths) far
away from the perturbation (dn ¼ 0) and at the peak
of the perturbation with dn ¼ 0.005. If the perturba-
tion velocity is tuned anywhere in between these two
velocity values, for example to the value indicated by
the dashed line, then the whole spectrum (shaded area)
experiences an horizon and Hawking radiation will

Figure 2. (a) Light phase velocity with no dispersion far
away from the perturbation (dn ¼ 0) and at the peak of the
perturbation with dn ¼ 0.005. The dashed line indicates a
value of the perturbation v for which Hawking radiation will
cover the full predicted blackbody spectrum. (b) Light phase
velocity with dispersion: fused silica glass dispersion has been
used in this example. For the same conditions as in (a), only a
very restricted bandwidth of wavelengths will be emitted in
the form of Hawking radiation.
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cover the full predicted blackbody spectrum. In Figure
2(b) we show the same situation but now including
dispersion: fused silica glass dispersion has been used
in this example. For the same conditions as in (a), only
a restricted bandwidth of wavelengths will be emitted
in the form of Hawking radiation (shaded area) and
the full blackbody spectrum will not be visible. On the
one hand, dispersion appears therefore to ‘ruin’ the
spectrum. But on the other it provides us with a
remarkably effective method to test the presence of an
horizon: the emitted spectrum depends critically on the
velocity of the perturbation. If this can be controlled,
then we have a very simple method by which we may
compare precise spectral measurements against the
straightforward prediction of Equation (9).

Dispersion has a further important consequence on
Hawking radiation. In the absence of dispersion,
radiation would accumulate at the white hole horizon
for an infinite time. This would also lead to an infinite
phase divergence and a consequently infinite blue-shift
of the incoming frequency. Likewise, any emission
observed far from a black hole horizon must originate
from an infinitely blue-shifted vacuum fluctuation
close to the horizon. Hawking radiation would there-
fore seem to originate from wavelengths that close to
the horizon were smaller than the Planck scale,
�10735m. This in turn raises some doubts regarding
the validity of the actual prediction of Hawking
radiation as the laws of physics are expected to change
radically at these length scales (the so-called trans-
planckian problem). Dispersion completely avoids this
issue: as light accumulates on the white hole horizon it
is blue shifted. However, in most dielectrics blue-
shifted wavelengths will travel slower than red-shifted
wavelengths implying that at a certain point the blue-
shift will become such that the light will slow down and
finally detach itself from the perturbation well before
the Planck scale is reached. The study of analogue
Hawking radiation therefore occurs in a regime in
which transplanckian issues are of no concern or
relevance.

In Figure 3(a) we show a typical dispersion relation
that we will be dealing with. This is a simple quadratic
dispersion curve, n0 ¼ A þ Bo2, where A ¼ 1.44 and
B ¼ 10731 s2. Such a simplified dispersion relation can
actually match the real dispersion of, for example,
fused silica glass in the visible and near-infrared
spectral region with sufficient precision to capture all
of the necessary physics, at least at a qualitative level.
The solid/dashed curves in Figure 3 indicate the
dispersion branches that have positive/negative fre-
quency in the laboratory reference frame. A common
practice is to adopt the dispersion curves in the
comoving frame rather than in the laboratory reference
frame. We pass from one reference frame to the other
using the Doppler relations

o0 ¼ gðo�vkÞ; ð12aÞ

k0 ¼ g k� v

c2
o

� �
; ð12bÞ

where k ¼ o[n(o) þ dn]/c. The laboratory frame dis-
persion curves in Figure 3(a) transform in the comoving
frame (for u ¼ 0.99c/n and dn ¼ 0) as shown in Figure
3(b). An alternative and useful representation with o0 as
a function of o is shown in Figure 3(c). We note that for
increasing dn or v, the comoving frame dispersion curves
will bend further downwards, as shown in Figure 3(c).
The comoving frame dispersion curves are particularly
convenient due to the fact that frequency o0 is a
conserved quantity. This can be demonstrated on very
simple grounds by deriving the hamiltonian for a space–
time varying medium and by showing that o0 is a
constant of motion [16]. An alternative route is based on
a scattering model. The perturbation acts as a scattering
defect and the scattered light will have a wave-vector
kout(o) that is related to the input wave-vector kin(oIN)
by momentum conservation [45]:

koutðoÞ¼ kINðoinÞþ
o�oin

v
: ð13Þ

Figure 3. Dispersion curves for the numerical simulations in Figures 4(a) and 6(b). (a) Dispersion curves in the laboratory
reference frame. (b) Dispersion curves in the comoving frame. The full-circles indicate the position of the IN, P and N mode
frequencies and the horizontal dashed lines correspond to �o0IN. In (c) we plot the comoving frequency, o0/2p, as a function of
the laboratory frame frequency, o/2p for various values of dn.
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This momentum conservation relation may be tran-
sformed into the comoving frame using Equation (12)
and leads to

o0 ¼o0IN: ð14Þ

In other words, momentum conservation in the
laboratory reference frame is equivalent to frequency
conservation in the comoving frame. We may there-
fore use this to predict how an input probe wave is
transformed during the interaction with the perturba-
tion by simply looking for the intersections of the
comoving dispersion relation with a horizontal line
that passes through o0IN. We call these intersection
points ‘modes’, in the sense that they identify specific
modes of the electromagnetic field and are described
by well-defined o0 and k0 values (or o0 and k’ in the
comoving reference frame). In particular, in the
following we will continuously refer to the input
mode as the ‘IN’ mode and the positive or negative
frequency Hawking modes generated at the horizon
as the ‘P’ and ‘N’ modes. In Figure 3(b) the
horizontal dashed line intersects the dispersion curve
at two points for positive frequencies. The IN mode
has positive group velocity v0g¼ do0=dk0 and thus
approaches the perturbation, i.e. it is moving forward
on the comoving frame. The scattered mode, indi-
cated with ‘P’, occurs with a negative gradient and is
thus reflected backwards from the perturbation (note
that in the laboratory frame, both IN and P modes
will be moving in the forward direction). A third
mode is possible and is indicated with ‘B’: this is just
the IN mode that is propagating backwards and is
usually not considered as only the forward propagat-
ing IN mode is excited. Finally, a fourth mode is
available, namely the intersection with �o0IN: this
gives what we will call the negative mode, indicated
with ‘N’. This mode is allowed as it is the complex
coniugate of the ‘N cc’ mode that lies at þo0IN.
However, we prefer to consider the N mode rather
than the N cc mode as the former has positive
frequency in the laboratory reference frame and will
correspond to the mode actually measured in
experiments.

We note that mode conversion from the IN mode
to the P mode has been observed in a wide variety of
settings (although this may not be immediately
apparent due to the different terminology with respect
to that used here):

(1) In optical fibres it is possible to excite a
soliton pulse as the result of a balance between
nonlinear (intensity induced) frequency broad-
ening and dispersion. However, at high input

intensities high order solitons are generated
that then breakup as the result of an
instability and shed blue-shifted light that is
usually called a dispersive wave or Cherenkov
radiation (not to be confused with the
Cherenkov radiation generated by superlum-
inal charged particles) [46]. The dispersive
wave emission obeys a momentum conserva-
tion law which, neglecting a nonlinear phase
correction term, is identical to Equation (13)
[46–49] and thus falls under the same general
explanation presented here.

(2) In higher dimensions, e.g. in 2D waveguides or
in bulk media, self-focusing and self-induced
spatiotemporal reshaping of the input pulse
lead to the formation of the so-called X-waves.
X-waves are characterised by two hyperbolic
branches in the spectrum when viewed in angle-
frequency coordinates: one branch passes
through oIN and the other passes through the
P mode frequency at zero angle. A more
general description may be given in which the
whole X-wave is actually expressed using only
Equation (13) [45,50–53].

The P mode therefore emerges as an ubiquitous
feature in nonlinear optics and it owes this ubiquity to
the fact that it is simply a restatement of moment
conservation.

The same reasoning may of course be applied to the
negative N mode: this mode too is a result of
momentum conservation and should therefore be
expected. However, to date no (optical) measurements
have ever been performed that report the existence of
this mode. The dispersion relations simply tell us which
are the allowed modes, but do not tell us if the modes
will actually be created.

The P and N modes together form the classical
analogues of the Hawking pairs emitted from an
horizon. The existence of these modes is a very general
feature that is related only to the form of the dispersion
relation and to the existence of a natural comoving
reference frame in which frequency conservation leads
to the excitation of negative frequencies. Recently this
same reasoning has been applied to surface waves
travelling in flowing water. By creating a gradient in
the water flow, negative frequencies were observed,
generated at the horizon [54]. These first measurements
were then further developed and led to the first
demonstration of stimulated Hawking emission [55].
The horizon is stimulated by a probe wave and the
amplitudes of the emitted P and N waves are
measured. According to the theory, Hawking radiation
in both the gravitational and analogue context will be
characterised by precise relations that link the norms
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of the emitted waves (normalised with respect to the
norm of the input wave jINj2) [7,8,55,56]:

jPj2�jNj2¼ 1; ð15Þ

jNj2

jPj2
¼ exp ð�aoÞ: ð16Þ

Equation (15) implies that jPj2 þ jNj2 4 1 and the
Hawking effect will lead to amplification. Equation
(16) imposes a strict relation between the two modes: it
can be easily verified that indeed (15) and (16) imply
a thermal emission for the N mode, jNj2 ¼ 1/
[exp(ao)7 1], where a may be linked to a blackbody
temperature TH¼ �h=akB:

Gerlach gave a description of the black hole
horizon in terms of a parametric amplifier [57]. In
the absence of a probe pulse the horizon will amplify
vacuum fluctuations but it will of course likewise
convert and amplify any classical probe pulse that is
sent onto it [39]. Parametric amplification is a well-
studied phenomenon in wave physics, in particular in
the context of nonlinear optics. Very efficient excita-
tion and amplification of vacuum states is achieved for
example using crystals with a second order, or so-
called w(2) nonlinearity [58], i.e. crystals that exhibit a
nonlinear response that scales with the square of the
input electric field. This same mechanism is actually
the most widely used and robust method for generating
quantum correlated photon pairs that have then in
turn been used to test quantum theories and develop
quantum information transmission and manipulation.
The photon distribution of the radiation excited by
these optical methods is also thermal. However there is
a fundamental difference with respect to Hawking
radiation: the thermal emission obtained by standard
nonlinear optical parametric processes is thermal with
a different temperature characterising each mode (i.e.
frequency in the monochromatic limit) [59,60]. Con-
versely, Hawking emission is composed of radiation
that has exactly the same temperature TH over the
whole spectrum [57,59]. Parametric amplification at a
horizon in the form of Hawking radiation is therefore
a very specific and peculiar effect that is quite unlike
usual nonlinear optical parametric amplification.

4. Numerical simulations of one-dimensional dielectric

white holes

An interesting question raised by these findings and
predictions is ‘what does Hawking radiation corre-
spond to in the framework of the Maxwell equations?’.
As should be expected, analogue Hawking radiation
does emerge from Maxwell’s equations yet it is a new

and unexpected effect that has not been predicted
before.

We performed numerical simulations using the
finite-difference time-domain technique applied to the
discretised Maxwell equations [61]. The equations
solved are

@Ey

@x
¼ �m @Hz

@t
;

@Hz

@x
¼ � @ðeEyÞ

@t
; ð17Þ

where e ¼ e (x–vt) ¼ [n0 þ dn(x–vt)]1/2 is the medium
permittivity. We underline that there are no non-
linearities involved in these equations: only linear
propagation is simulated and the travelling refractive
index perturbation is included in e. In our simula-
tions we took a super-gaussian form for the perturba-
tion: dn ¼ dnmax exp[–((x-vt)/s)

m], where m is an even
integer.

In these studies we do not directly verify the
emission of radiation from the vacuum state. Emission
from the horizon is stimulated by an incoming classical
probe pulse and we study how this pulse evolves and
thus gather information on the underlying Hawking
radiation mechanism. As mentioned above, we will
only focus attention on the white hole, i.e. on how the
probe pulse interacts with the steep, trailing edge of the
perturbation.

Figure 4 shows an example of such a simulation (an
animation, WH-1.mp4, of the same simulation is also
available for download with this paper). Dispersive
effects are introduced through numerical dispersion
that depends on the grid resolution and may thus be
controlled [62]. Figure 5(a) shows the dispersion in the
comoving frame relative to the simulations in Figure 4.
The perturbation has v ¼ 0.99c/n0, maximum ampli-
tude dnmax ¼ 0.01 and supergaussian order m ¼ 26 so
that dn raises from 0 to � dnmax over a distance � 1mm.
The input probe pulse is taken with initial wavelength
4 mm and is placed behind the perturbation. This is
equivalent to studying the evolution of a mode that
attempts to enter a white hole. Figures 4(a)–(d) show
the electric field profile at various propagation
distances within a window centred on the perturbation:
the input probe pulse catches up with the perturbation
where it is blocked at the horizon and frequency
shifted until it finally starts to lag behind (due to
dispersion that decreases the pulse velocity with
decreasing wavelength). Figures 4(e)–(h) show the
spectra relative to each electric field profile: the input
spectral peak (IN) is transformed into two distinct
peaks (P and N). We underline once more that this is a
purely linear simulation, i.e. the observed frequency
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conversion is not the result of an optical interaction
involving e.g. w(2) or w(8) nonlinearities. Rather, this
frequency conversion finds a simple explanation in
terms of the generation of positive and negative
Hawking modes: in Figure 5(a) we show the modes
on the dispersion curve at the horizon. As can be seen,
both the P and N modes lie on the curve and both
conserve o0IN. Moreover, by repeating such a simula-
tion for many different input frequencies and taking
the ratio of the photon numbers in the two output
modes, jNj2/jPj2, it is possible to verify that these
satisfy relation (16), i.e. the emission is thermal with
the same temperature over the whole spectrum of input
frequencies [63].

Figure 6 shows the result of a simulation with the
same input parameters as in Figure 4 with the only
difference that the input wavelength is now 2 mm and
the probe pulse is placed inside the perturbation which
is now moving faster than the pulse (see the animation,
WH-2.mp4 of this simulation). This is equivalent to
studying the evolution of a mode that exits a white
hole. As the pulse exits the perturbation, it is frequency
converted, as before, to a P and N mode. The
dispersion curves corresponding to this simulation
are shown in Figure 5(b): note that because the input
probe pulse has a phase velocity that is lower than the
perturbation velocity, in the comoving frame it now
has initial negative (comoving) frequency.

Figure 5. Dispersion curves for the numerical simulations
in Figures 4(a) and 6(b). We plot the comoving frequency, o0/
2p, as a function of the laboratory frame frequency, o/2p.
The full-circles indicate the position of the IN, P and N mode
frequencies.

Figure 6. Numerical simulations of stimulated Hawking
radiation. (a)–(d) Evolution of the electric field of an input
few-cycle laser pulse with an initial wavelength of 2 mm. The
input pulse now starts from inside the perturbation with
lower initial group velocity vg 5 v and thus exits the
perturbation, passing through the white hole horizon. The
spectra (S) relative to each of these graphs are shown in (e)–
(h) in logarithmic scale.

Figure 4. Numerical simulations of stimulated Hawking
radiation. (a)–(d) Evolution of the electric field of an input
few-cycle laser pulse with an initial wavelength of 4 mm. The
shaded area indicates the refractive index perturbation. The
arrows indicate the qualitative amplitude of the velocities
(solid arrow for the probe pulse, dashed arrow for the
perturbation). The spectra (S) relative to each of these graphs
are shown in (e)–(h) in logarithmic scale: the input spectral
peak is indicated with ‘IN’. The ouput spectrum clearly
exhibits two distinct blue shifted peaks, the positive and
negative Hawking modes indicated with ‘P’ and ‘N’ in (h).

5. Creating an effective moving medium with a laser

pulse

So far the discussion has referred to a generic refractive
index perturbation without actually mentioning how
this may be generated. The idea originally proposed by
Leonhardt and co-workers [33] is based on the Kerr
effect [58]: a sufficiently intense laser pulse propagating
in any isotropic medium such as a gas, liquid or
amorphous solid will excite a nonlinear polarisation
response

P¼ e0ðwð1Þ þ wð3ÞE2ÞE; ð18Þ

where w(1) is the linear susceptibility that is related to the
linear refractive index n0 ¼ (1 þ w(1))1/2, w(3), is the
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third-order nonlinear susceptibility (also know as the
Kerr nonlinearity) and E ¼ jEcos(ot) is the electric
field of the intense laser pulse that excites the medium.
The third-order polarization term may thus be re-
written as PNL ¼ 1/4w(3)jEj3 cos(3ot) þ 3/4w(3)jEj3cos
(ot). The first term oscillates at 3o, i.e. it acts as a
source for third harmonic frequency generation and
may be neglected (unless the beams or the medium are
specifically engineered so as to enhance this process).
The second term oscillates at the input frequency o and
from Equation (18) we define an effective refractive
index n¼ð1þ wð1Þ þ 3=4wð3ÞE2Þ1=2 ’ n0þ n2I, where the
nonlinear index is n2 ¼ (3/8w(3)n0 and I ¼ jEj2. The
intensity profile of a laser pulse usually has a gaussian-
like form, i.e. I ¼ I(x-vt) ¼ exp[7((x-vt)/s)2], where
the pulse speed will be given by the group velocity of
light in the medium, v ¼ vg ¼ do/dk. In other words,
an intense laser pulse propagating in a nonlinear Kerr
medium will create a refractive index perturbation
dn ¼ n2I that travels close to the speed of light. We note
that the reasoning above may be generalised without
loss of generality to the case in which the Kerr medium
is excited by an intense laser pulse and the resulting
perturbation acts upon a second, weak probe pulse [33,
58,63].

There are various methods by which the Kerr
medium may be excited to induce a refractive index
perturbation. However, successful measurements of
Hawking radiation do impose some additional
constraints:

(1) The intensity profile should be stationary
during propagation in order to recreate sta-
tionary excitation conditions. This is not a
trivial requirement due to the fact that the
same Kerr effects that generate the perturba-
tion also lead to back-reaction on the pump
laser pulse and detrimental effects such as pulse
splitting, self-focusing and white light
generation.

(2) The existence and frequency range of an horizon
is completely determined by the perturbation

velocity as seen in Equation (9). So ideally we
would like to control the speed v.

Bearing this in mind, a few experimental setups have
been proposed and are summarised in Figure 7.
Leonhardt’s original proposal was based on the use
of optical solitons propagating in highly nonlinear
photonic crystal fibres. These are fibres with micro-
structured cores that on the one hand allow one to
tightly confine light within the core region, so as to
increase the pulse intensity and amplitude of the
perturbation, and on the other allow one to engineer
the dispersion relation and thus the group velocity of
the stationary soliton. The dnmax generated by these
solitons is usually of the order of 1074. Experiments
using fibre solitons therefore satisfy our list of
requirements and indeed the first evidence of hor-
izon-related frequency conversion was experimentally
observed using such fibres in 2008 [33].

Another option is to attempt to harness the
nonlinear propagation of laser pulses in bulk media.
One possibility that has been proposed [44,63,64] is to
use so-called filaments. The term filament, or light
filament, denotes the formation of a dynamical
structure with an intense core that is able to propagate
over extended distances much larger than the typical
diffraction length while keeping a narrow beam size
without the help of any external guiding mechanism
[65]. These sub-diffractive ‘light-bullets’ may be either
generated spontaneously of by pre-shaping the laser
beam. Spontaneous filaments are born as a conse-
quence of a spontaneous spatio-temporal reshaping of
an input Gaussian-shaped laser pulse when it is loosely
focused into a nonlinear Kerr medium. If the input
power is larger than a certain critical threshold power,
the pulse will self-focus as a result of the spatially
varying refractive index perturbation that the pulse
generates and that acts in a similar fashion to a
focusing lens. At the same time the spectrum is
broadened and both the transverse and longitudinal
profiles of the pulse are simultaneously reshaped until
a quasi-stationary (or ‘dynamical’) state is formed.

Figure 7. Sketch of three different methods employed to generate intense laser pulses with quasi-stationary propagation over
long distances. Photonic crystal fibres have micro-structured cores that allow one to both tightly confine light and control the
material dispersion. Spontaneous filaments are obtained by loosely focusing an intense laser pulse in a bulk Kerr medium, e.g.
fused silica glass.
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Spontaneous filaments exhibit a number of features
that are attractive for the generation of optical
horizons: (i) they are extremely simple to obtain and
are characterised by a very intense peak, e.g. I * 1012–
108 W cm72 which propagates over distances of the
order of 2–10 diffraction lengths. In fused silica n2
*3 6 1016 cm2 W71 so we may have dnmax *1073.
(ii) Along the longitudinal coordinate the pulse may
split in two and the trailing pulse will be drastically
shortened and exhibit an extremely sharp shock front
on the trailing edge. Moreover, the trailing peak
propagates with a velocity that is significantly slower
than the input pulse group velocity. By controlling the
input conditions, e.g. wavelength, focusing, power, it is
possible to control to a certain extent both the
steepening effects and the peak velocity. Figure 8(a)
shows an example of the numerically simulated
evolution of the longitudinal profile of a 1.055 mm,
100 fs long laser pulse that undergoes filamentation in
fused silica. The pulse splits into two daughter pulses:
the rear pulse has significantly higher intensity and
exhibits a self-steepened shock front on its trailing edge
with a nearly single optical duration. Figure 8(b) shows
the velocity of this peak over a longer propagation
distance. As can be seen v varies and gradually accele-
rates. This feature has been used in experiments: by
selecting the emission at different x it is possible to
study the behaviour at different v [63,64].

A further possibility that has been proposed is the
use of Bessel filaments. In this case the transverse
profile of the input laser beam is re-shaped into a
Bessel-like pattern using a conical lens (also called an
axicon). The axicon transforms the laser beam by
redirecting light along a cone at an azimuthally
symmetric angle y towards the optical axis. Light
propagating towards the axis will therefore interfere
and the resulting interference pattern will be a non-
diffracting Bessel pattern. Moreover, simple geometric
considerations show that the central Bessel peak
propagates along the x-axis with velocity v ¼ vg/cosy.
Therefore, by simply changing the angle of the axicon,
it is possible to control the propagation velocity of the

Bessel pulse. We note that the spontaneous filament
leads to a trailing intense peak that is slowed down
with respect to the input pulse group velocity, vg whilst
the Bessel pulse travels faster.

6. Experiments

Laser-pulse induced analogues are, to date, the only
analogue systems in which experiments are currently
being carried out to investigate and probe the quantum
properties of analogue Hawking emission. These
experiments were initiated in 2008 by the work of
Philbin et al. [33]: a soliton was created inside a
photonic crystal fibre and blue-shifting of part of the
soliton radiation was observed as a consequence of the
interaction with the self-generated white hole horizon.
This was a purely classical effect but clearly demon-
strated the possibility to generate horizons in dielectric
media using intense laser pulses.

This idea was later extended to filament induced
perturbations. The spectral transformations of a
filament pulse are significantly richer than in a fibre
due to the additional transverse degree of freedom.
Very specific hyperbolic-shaped spectra are observed in
angle-wavelength coordinates. These features were
shown to be reproduced and predicted very precisely
within the framework of a model based on the metric
(8), thus confirming that by using the basic mathema-
tical tools of general relativity it is possible to capture
relevant details of optical pulse propagation in the
presence of a travelling perturbation [44].

These first experiments were then adapted so as to
search for signatures of Hawking radiation. The
experimental layout is depicted in Figure 9: the input
laser pulse is sent on to a 2 cm long sample of pure
fused silica. Filaments were formed by either loosely
focusing the input pulse with a 20 cm focal length lens
(spontaneous filaments) or by replacing the lens with
an axicon so as to generate a y*78 Bessel filament.
Light emitted in the forward direction is extremely
intense with an average photon number of the order
1015 photons/pulse. Considering that Hawking radia-
tion is unlikely to provide more that 1 photon/pulse, a
huge and extremely challenging suppression of the
laser pump pulse radiation is required. The photons
emitted from the sample were therefore collected at 90�

rather than in the forward direction: by using
horizontally polarised pump pulses, Rayleigh scatter-
ing is effectively suppressed so that scattered photons
at wavelengths in the predicted Hawking emission
range are below 0.001 photons/pulse. By employing
both spontaneous and Bessel filaments in separate
measurements it was possible to measure radiation
emitted from perturbation with various velocities. The
results, adapted from [63,64], are summarised in Figure

Figure 8. (a) Example of the numerically simulated
longitudinal profile of a spontaneous filament at various
propagation distances. (b) Evolution of the intense trailing
peak velocity.
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10(a): the solid curves represent the predicted Hawking
emission wavelengths based on Equation (9), for
increasing dn. The solid bars summarise the results
from four measurements: the vertical extension in-
dicates the measured spectral bandwidth (at half
maximum) and the horizontal bars indicate the
velocity variation of the perturbation in the case of
spontaneous filaments (indicated with S). The mea-
surements follow the expected dependence and indicate
a tight correlation between the wavelength or colour of
the emitted radiation and the perturbation velocity
thus supporting the claim that this radiation is indeed
emitted from the analogue horizon. The measurement
indicated with B refers to the Bessel filament and is
shown in more detail in Figure 10(b). In this case there
is no spread of the perturbation velocity and it was
possible to probe the emission for increasing peak
intensities, i.e. increasing dn. The bandwidth of the
emitted radiation increases with intensity and increases
predominantly to longer wavelengths. This is precisely
in agreement, also at a quantitative level [63,64], with
Equation (9).

On the basis of these results, these measurements
have been proposed as the first experimental evidence
of Hawking-like emission from an analogue horizon
[63,64]. However, this is not generally considered to be
conclusive evidence and further measurements are
called for in order to verify some open issues: the
measured photon numbers, of the order of 0.1–0.01
photons/pulse, appear to be too high to be accounted
for on the basis of a blackbody emission. Yet other
models [20] appear to give predictions that confirm the
measurements. Moreover, the theory predicts that
photons will be generated in correlated pairs. The
photons collected at 90� are likely to have suffered
strong scattering after emission in the forward direc-
tion and it will therefore be very unlikely to observe

any kind of pair-correlation with such a setup. Other
experimental layouts, e.g. based on fibres which will
confine the photon pairs along the same direction, are
therefore required.

7. Conclusions and perspectives

Laser pulses have been demonstrated in a variety of
settings to generate analogue white holes and horizons
that transform light according to the predictions of
models that are derived within the context of general
relativity. There is an intrinsic beauty in space–time
geometries, that same beauty that pushed Einstein to
develop, and others to accept, the theory of general
relativity [66]. The extension to the study of the
‘geometry of light’ [67], is no exception in this sense.
It is possibly not clear to date how far-reaching this
extension will be and if it will allow one to gain further
insight into quantum gravity theories or black hole
physics. However, analogies between black hole

Figure 9. Sketch of the experimental layout. The input laser beam is focused into the Kerr sample (fused silica glass) using
either a 20 cm focal length lens (to induce spontaneous filamentation) or an axicon with a 20� cone base angle (to create a Bessel
filament). The inset shows a schematic representation of the Kerr sample: the perturbation propagates following the arrows and
photon pairs, corresponding to the negative and positive Hawking pairs, are excited.

Figure 10. (a) Measured radiation wavelength for various
perturbation velocities. The red curves show the predicted
velocity dependence of the radiation wavelengths. The Bessel
measurement is expanded in (b): the four different vertical
bars indicated four different spectrum bandwidths obtained
by increasing the input laser pulse intensity. The bars are
slightly displaced horizontally for clarity but they actually all
have the same v ¼ 2.065 6 108 cm s71.
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kinematics and flowing media are certainly extending
the limits of our understanding across various dis-
ciplines, e.g. waves in fluids, acoustics and optics. And
thanks to the common underlying tools derived from
general relativity, discoveries developed in one field
apply also to the others and a deeper insight is
achieved by directly comparing similar or different
behaviours across the various disciplines.

The optical analogue is still in its infancy and we
expect a strong development in the next few years. A
number of recent proposals are based either directly on
the presence of an horizon or on the same technology
required to build an horizon. For example Demircan
et al. have studied an optical transistor that acts
through an optical event horizon [68], McCall et al.
have proposed a temporal cloaking device that uses
pulses that split and then recombine thus cancelling
out portions of history [69] and Ginis et al. have
proposed a frequency converter based on a metama-
terial analogue of cosmological expansion [70]. Stimu-
lated Hawking mode conversion as seen in the
numerical simulations presented here and in the
literature [63] represents a novel kind of optical
amplifier and is awaiting experimental demonstration.
Such an amplification mechanism could then in turn
lead to the first ‘black hole laser’ whereby a wave is
trapped between two horizons that form a cavity: at
each reflection from the white hole horizon light is
amplified through a stimulated Hawking process with
a resulting laser-like behaviour [71].

These are just a few ideas and possibilities. There
are certainly many more that await to be investigated
and brought to light through the blending of general
relativity with flowing media.
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