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BACKGROUND: Imaging technologies, which
extend human vision capabilities, are such a
natural part of our current everyday experience
thatwe often take them for granted.However,
the ability to capture imageswith newkinds of
sensing devices that allow us to see more than
what can be seen by the unaided eye has a rel-
atively recent history.
In the early 1800s, the first ever photograph

was taken: anunassumingpicture that required
days of exposure to obtain a very grainy image.
In the late 1800s, a photograph was used for
the first time to see themovement of a running
horse that the human eye alone could not see.
In the following years, photography played a
pivotal role in recording human history, rang-
ing from influencing the creation of the first
national parks in theUnited States all theway
to documenting NASA’s Apollo 11 mission to
put a man on theMoon. In the 1990s, roughly

10 billion photographs were taken per year.
Facilitated by the explosion in internet usage
since the 2000s, this year we will approach
2 trillion images per year—nearly 1000 images
for every person on the planet. This upsurge is
enabled by considerable advances in sensing
and data storage and communication. At the
same time, it is driving the desire for imaging
technology that can further exceed the capabil-
ities of human vision and incorporate higher-
level aspects of visual processing.

ADVANCES: Beyond consumer products, re-
search labs are producing new forms of imag-
ing that look quite different from anything
we were used to and, in some cases, do not
resemble cameras at all.
Light is typically detected at relatively high

intensities, in the spectral range andwith frame
rates comfortable to the human eye. However,

emerging technologies are now relying on
sensors that can detect just one single photon,
the smallest quantum out of which light is
made. These detectors provide a “click,” just
like a Geiger detector that clicks in the pres-
ence of radioactivity. We have now learned to
use these “click” detectors to make cameras
that have enhanced properties and applica-

tions. For example, videos
can be created at a tril-
lion frames per second,
makingabillion-fold jump
in speed with respect to
standardhigh-speed cam-
eras. These frame rates

are sufficient, for example, to freeze light in
motion in the same way that previous photo-
graphy techniques were able to freeze the
motion of a bullet—although light travels a
billion times faster than a supersonic bullet.
By fusing this high temporal resolution to-
gether with single-photon sensitivity and ad-
vanced computational analysis techniques, a
newgeneration of imaging devices is emerging,
together with an unprecedented technological
leap forward and new imaging applications
that were previously difficult to imagine.
For example, full three-dimensional (3D)

images can be taken of a scene that is hidden
behind a wall, the location of a person or car
can be precisely tracked frombehind a corner,
or images can be obtained froma few photons
transmitted directly through an opaquemate-
rial. Inspired by quantum techniques, it is also
possible to create cameras that have just one
pixel or that combine information frommul-
tiple sensors, providing images with 3D and
spectral information that was not otherwise
possible to obtain.

OUTLOOK:Quantum-inspired imaging tech-
niquescombinedwithcomputationalapproaches
and artificial intelligence are changing our per-
spective of what constitutes an image andwhat
can or cannot be imaged. Steady progress is
being made in the direction of building cam-
eras that can see through fog or directly inside
the human body with groundbreaking poten-
tial for self-driving cars andmedical diagnosis.
Other cameras are being developed that can
form 3D images from information with less
than one photon per pixel. Single-photon cam-
eras have already made their way into widely
sold smartphoneswhere they are currently used
for more mundane purposes such as focusing
the camera lens or detectingwhether the phone
is being held close to one’s ear. This technol-
ogy is already out of the research laboratories
and is on the way to delivering fascinating im-
aging systems. ▪
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Quantum-based imaging systems are being developed to image through opaque media
(e.g., fog or human tissue) that scatter light in all directions.P
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Computational imaging combines measurement and computational methods with the
aim of forming images even when the measurement conditions are weak, few in number,
or highly indirect. The recent surge in quantum-inspired imaging sensors, together with
a new wave of algorithms allowing on-chip, scalable and robust data processing, has
induced an increase of activity with notable results in the domain of low-light flux imaging
and sensing.We provide an overview of the major challenges encountered in low-illumination
(e.g., ultrafast) imaging and how these problems have recently been addressed for
imaging applications in extreme conditions. These methods provide examples of the
future imaging solutions to be developed, for which the best results are expected to arise
from an efficient codesign of the sensors and data analysis tools.

C
omputational imaging is the fusion of com-
putationalmethods and imaging techniques
with the aim of producing better images,
where “better” has a multiplicity of mean-
ings. The development of new imaging

sensors and, in particular, instrumentswith single-
photon sensitivity, combined with a newwave of
computational algorithms, data handling capa-
bility, and deep learning, has resulted in a surge
of activity in this field.
One clear trend is a shift away from increasing

the number of megapixels and toward fusing
camera datawith computational processing and,
if anything, decreasing the number of pixels,
potentially to a single pixel. The incoming data
may therefore not actually look like an image
in the conventional sense but are transformed
into one after a series of computational steps
and/ormodeling of how the light travels through
the scene or the camera. This additional layer
of computational processing frees us from the
chains of conventional imaging techniques
and removes many limitations in our imaging
capability.
We briefly describe some of the most recent

developments in the field, including full three-
dimensional (3D) imaging of scenes that are hid-
den (e.g., around a corner or behind an obstacle),
high-resolution imaging with a single-pixel de-
tector at wavelengths for which no cameras exist,
cameras that can see through fog or inside the
human body, and cameras that mimic the hu-
man eye by creating detail only in areas of in-
terest. We will also discuss how multispectral

imaging with single-photon detectors can im-
prove 3D reconstruction and provide richer in-
formation about a scene.
We discuss how single-photon detection tech-

nologies are transforming imaging capabilities
with single-photon–sensitive cameras that can
take pictures at the lowest light levels and with
the ability to create videos reaching a trillion
frames per second. This improvement has en-
abled the capture of images of light beams trav-
eling across a scene and provided opportunities
to observe image distortions and peculiar rela-
tivistic temporal inversion effects that are due
to the finite speed of light. The ability to cap-
ture light in flight also underpins some of the
applicationsmentioned above—for example, the
ability to view a 3D scene from around a corner.
Probabilistic modeling of the particlelike nature

of light when using single-photon detectors has
stimulated the birth of new computational tech-
niques such as “first-photon imaging,” which
hints at the ultimate limits of information to be
gained from detecting just one photon.

Single-pixel and ghost imaging

Although most imaging techniques that have
emerged recently are based on classical detec-
tors and cameras, some of these approaches have
been inspired by or have a tight connectionwith
similar ideas in quantum imaging. A prime ex-
ample is ghost imaging (Fig. 1) (1), originally
thought to be based purely on quantum princi-
ples but now recognized as being dependent
on spatial correlations that can arise from both
quantum and classical light (2). The realization
that this technique does not require quantum
light led to a merging of the fields of computa-
tional ghost imaging (3) andwork on single-pixel
cameras (4), as well as to an overall increase of
activity in the field. In its quantum version, ghost
imaging refers to the use of parametric down-
conversion to create pairs of photonswith corre-
lated positions. If we detect the position of one
photon with a standard camera and illuminate
an object with the other position-correlated pho-
ton, it is sufficient to detect only the reflectance
or transmittance of the object with a single-pixel
detector—i.e., to measure the correlation count
between the beams to then reconstruct a full
image by repeating themeasurementwithmany
different photon pairs (each of which will be
randomly distributed because of the random
nature of the correlated photon pair generation
process) (5, 6). It is now acknowledged that the
quantum properties of the correlated photons
play no role in the image reconstruction process:
Thermal light split into two beams using a beam
splitter can be used equally effectively, albeit at
a higher photon flux (7). Rather than using a
beam splitter, it is possible to use a spatial light
modulator to create a pattern where the copy is
simply the computer memory. This approach
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Fig. 1. Ghost imaging. Random spatial patterns, Rn, illuminate an object and only the total
transmitted (or reflected) light, An, is measured. This intensity reading is then computationally
combined with the information of the pattern, In(x, y) (either measured separately or known if
generated by a computer), to form an image of the object. CCD, charge-coupled device.
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therefore no longer requires a camera of any
kind in the setup: The computer-generated pat-
tern is already known and the image, I, can be
retrieved bymultiplying the single-pixel readout,
ai, with the corresponding pattern,Hi, and then
summing over all patterns, i.e., I ¼

X
i
aiHi. This

opens the route to so-called compressed single-
pixel imaging, in which assumptions about the
spatial correlations of the image enable patterns
to be judiciously chosen to require far fewer pat-
terns than the final number of image pixels, with
compression factors as high as 80 to 90%. This
concept is not dissimilar from standard JPEG
compression, which assumes that typical images
are concentrated in their spatial frequencies,
with the difference that now the compression
is applied at the image acquisition stage. By this
compression, single-pixel imaging is therefore
transformed from a slow, relatively inefficient
process into a highly efficient imaging technique
that can operate at video frame rates in full color
(8). More recent developments include exten-
sions to lensless imaging (9) and to full 3D images
for which depth information is obtained by also
using time-of-flight information (10, 11)—i.e., in
addition to object reflectivity, the imaging system
also estimates the light travel distance, d, from
the temporal shift, t, of the detected signal, as
the two are related by the speed of light, d = ct,
in free space, where c is the speed of light. In
general, this single-pixel technique suffers
from having low resolution and providing poor-
quality images even when compared with a cell-
phone camera. This limitation may be partly
overcome by taking inspiration from nature and
implementing computational algorithms so that
the system increases the density of the projected
spatial patterns only in areas of interest, there-
fore increasing the spatial resolution in regions
where it is needed and leaving the surrounding
areas relatively less defined (12). This is just one
example of computational techniques being com-
bined with detection technology to provide more
efficient sensing solutions. Another example is
the first-photon imaging approach that emerged
from a codesign of hardware and computational
algorithms, built around the concept of single-
photon detection.

First-photon imaging

An important legacy of recent interest in the field
of quantum information science is the develop-
ment of a series of detector technologies for
single photons. The workhorse for most labo-
ratories is the single-photon avalanche diode
(SPAD). SPADs are, in essence, semiconductor
diodes that are reverse-biased beyond their
breakdown threshold: A single photon (or even
a thermally generated charge in the diode) is
sufficient to lead to the rapid charge multiplica-
tion process (or avalanche) that creates a spike
in the output current. A quenching mechanism
stops the avalanche process before the diode is
irreversibly damaged, leading also to a dead time
during which the diode is insensitive to incident
photons before being reactivated. The particle-
like nature of a photon is revealed through the

very short burst in the SPADoutput current that
can then be very precisely timed when a refer-
ence signal is also provided. The ability to pre-
cisely detect the photon arrival time can be used
for long-distance, high-precision light detection
and ranging (LIDAR). A distant object is illumi-
nated with a pointlike pulsed laser beam. Each
outgoing pulse starts a counter, which is then
stopped at time t when a return photon is
detected; accounting for the two directions of
the light travel, the distance of the illuminated
object is simply ct/2. Scanning the scene using
this time-correlated single-photon counting
(TCSPC) technique can therefore provide a
full 3D image (or depth image) of the scene
(13–15). However, TCSPC-based imaging can re-
quire very long acquisition times, in particular
when photons return to the detector at a low
rate. Conventional processing techniques require
(i) operation in the photon-starved regime (i.e.,
10% or less of the outgoing laser pulses should
give rise to a detected return photon so that bias
from detector dead times is negligible) and (ii)
measurement overmany illumination repetition

periods so that 100 to 1000 photons or more are
detected for each position. Under these condi-
tions, a faithful measurement of the photon ar-
rival time is obtained. This approach can easily
lead to acquisition times of a complex scene
that can be on the order of many seconds or even
minutes.
The computational imaging philosophy en-

ables a marked reduction in the number of de-
tected photons needed for 3D imaging (16). In
the first-photon imaging approach, only the
very first detected photon at each scan location
is used, so the acquisition time is limited primar-
ily by the speed of scanning, and any detector
dead time coincides with the scanning (17). Using
the number of pulses until a photon is detected
as an indirectmeasurement of reflectivity, along
with a piecewise-smooth assumption for both
reflectivity and depth, a 3D image of a scene is
produced after several computational steps, as
shown in Fig. 2. This approach builds a strong
link between the computational steps and the
detailed mechanism of single-photon detec-
tion, with various aspects (such as the noise

background and the particlelike nature of the
photons and their detection) built into the in-
formation used to retrieve high-quality 3D im-
ages. Similar extreme photon efficiency can be
achieved with a fixed dwell time at each scene
position (18), and principled statistical tech-
niques for adapting the local spatial resolution
to characteristics of the data enable background
noise 25 times as strong as the back-reflected
signal to be mitigated (19). Additional perform-
ance improvements have been obtained with
deep learning (20). Using an array of SPADs
parallelizes the data acquisition and thus can
increase imaging speed, though an array has
coarser time resolution, translating to coars-
ened longitudinal distance measurements (21).
Methods for arrays can also be highly photon
efficient (22).

Non–line-of-sight imaging

Photon counting has strongly affected the field
of non–line-of-sight (NLOS) imaging—i.e., the
imaging of objects that are, for example, hidden
behind awall, corner, or obstacle (23–32). Access

to very high temporal resolution imaging sys-
tems allows reconstruction of a full 3D image
of the hidden scene, as conceptually explained
in Fig. 3A. A short laser pulse is sent to a scat-
tering surface chosen so as to scatter light be-
hind the obstacle and thus illuminate the hidden
scene. The hidden scenewill reflect a return echo
that will once again hit the first scattering wall
and return to the imaging system. An intuitive
understanding of the hidden object reconstruc-
tion is based on the fact that the locus of points
that can give rise to a backscattered signal from
a laser spot at a position rl = (xl, yl) and mea-
sured at a given point ri = (xi, yi) on the wall is
given by jr � rlj þ jr � rij þ jzj ¼ ct. This equa-
tion describes an ellipsoid of points that can be
recalculated for each detection point on the wall:
each of these ellipsoids will overlap only at the
points of origin of the (hidden object) scattering.
Therefore, by summing over all ellipsoids, one
obtains a high “intensity” (proportional to the
overlap) in correspondence to the hidden ob-
ject. With sufficient temporal resolution and
additional processing to sharpen the retrieval,
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Fig. 2. First-photon imaging. (A) Each photon detection can be mapped to a 3D position,
which is often far from correct because half of the detections are due to background light. The
number of illumination pulses until a photon is detected is inversely proportional to an initial
estimate of reflectivity. (B) Exploiting piecewise smoothness yields improved reflectivity estimates.
(C) Approximate noise censoring removes most detections due to background light. (D) The
final estimate exploits piecewise smoothness of depth. [Adapted from figure 2 of (16)]
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it is possible to reconstruct full 3D shapes: for
example, 100 ps is sufficient to resolve centimeter-
sized features. Practically, most retrieval tech-
niques aim at iteratively finding an estimate of
r(x, y, z), which represents the physical distri-
bution of the hidden object, from the measured
transient image intensity

Iðx; y; tÞ ¼∭ 1

r2l r
2
i

dðjr� rl j þ jr� rij þ jzj� ctÞ

�rðx; y; zÞdxdydz

where d represents Dirac’s delta function. The
first demonstration of this technique was ob-
tained with the use of a streak camera (23)
that provides very high 1- to 10-ps temporal res-
olution but at the expense of relatively long
acquisition times (Fig. 3, B and C). Successive
demonstrations resorted to single-photon count-
ing to reconstruct 3D images (24) and to perform
tasks such as tracking of moving objects (27) and
humans, even over very large distances [more
than 50 m between the scattering wall and the
imaging system (28)]. Recent improvements have
demonstrated acquisition times on the order of
seconds for a full 3D scene reconstruction by
modifying the acquisition scheme. Specifically,
photons are collected coaxially [i.e., along the
same trajectory as the outgoing laser beam (31)],
and, as a result, the measurement integral is
simplified to

Iðx; y; tÞ ¼∭ 1

r4
dðr þ rl � tcÞrðx; y; zÞdxdydz

where the radiometric factor 1/r4 is now only
a function of t and can thus be removed from
the integral. Overall, the result of this is that
I(x, y, t) reduces to a convolution that substan-
tially decreases the computational retrieval times,
paving the way to real-time reconstruction of
3D scenes. This is an example of how imaging
hardware and computational techniques have
coevolved to create a new imaging capability.
It is worth pointing out that recent measure-
ments have shown not only real-time capability
but also the capacity for long-distance and full-
daylight operation (28, 31), thus moving from
proof-of-principle studies to first steps toward
deployment in real-world applications in just a
few years. An interesting challenge for this field
of research starts from the observation thatmuch
of the technology involved in NLOS imaging is
common with standard, direct line-of-sight of
LIDAR (i.e., 3D imaging of environments using
laser pulse time-of-flightmeasurements). In this
sense, NLOS imaging has the potential to become
a natural extension of LIDAR. In this context,
there are clear applications for NLOS imaging,
when combinedwith LIDAR, for urban safety and
unmanned vehicles. Additionally, future NASA
missions will employ SPAD arrays for LIDAR
mapping of planet surfaces, and studies are cur-
rently under way to evaluate the potential of
NLOS imaging to remotely (e.g., from a satellite)
assess the internal structure of underground

caves on planets, with a view toward future hu-
man colonization activities (33).

Enhanced SPAD arrays for imaging in
scattering media

Over the past several years, a number of indus-
trial and academic research groups have been
developing a new generation of cameras inwhich
each individual pixel consists of a SPAD. A rela-
tively widespread version of these sensors, of-
ten referred to as “quanta imaging sensors,” is
operated in binarymode—that is, the sensor pixel
generates a “1” when the number of photons is
larger than a certain threshold (typically set to
just one photon) and generates a “0” otherwise
(34–38). Each frame therefore has a single-bit
depth. To build an image, multiple frames must
be added together. This operation mode brings
some advantages: Aside from the single-photon
sensitivity, one can add asmany frames as desired
so as to achieve very high bit depths (dynamic
ranges) that are not attainable with standard
complementarymetal-oxide semiconductor cam-
eras. Moreover, the single-bit nature of the acqui-
sition permits very high frame acquisition rates
(rates up to 100 kHz have been reported) (39).
Progress has also beenmade in the full on-chip

integration of TCSPC electronics, thus providing
the additional functionality of temporal resolu-
tions as low as 50 ps (21, 40–43). This implies that,
when combinedwith a high repetition rate laser
for the active illumination of the scene, video
rates reaching up to 20billion frames per second
can be achieved (44). This remarkable perform-
ance can be better appreciated when expressed
in terms of the actual imaging capability. At such
frame rates, light propagates just 1.5 cm between
successive frames, which implies that it is pos-
sible to actually freeze light inmotion in much
the sameway that standard high-speed cameras
can freeze themotion of a supersonic bullet. The
first images of light in flight were shown in the
late 1960s via nonlinear optical gating methods
(45–47), but the first camera-based measure-
mentswere only recently demonstratedwith the
use of a streak camera (48). More recent mea-
surements based on SPAD arrays have allowed
the first capture of light pulses propagating in
free space with total acquisitions times on the
order of seconds or less (44). SPAD array cam-
eras have also been used to directly image laser
pulse propagation through optical fibers: Beyond
their direct applications (e.g., estimation of phys-
ical parameters of optical fibers), these measure-
ments combined a fusion of single-photon data
with hyperspectral imaging over several different
wavelengths (discussed below) and computa-
tional processing through which the 32-pixel–
by–32-pixel resolutionwas successfully up-sampled
by using the temporal axis to re-interpolate the
pulse trajectory in the (x, y) spatial plane (49).
The ability to capture simultaneously spatial

and high-resolution temporal information at very
low light levels with SPAD cameras has recently
been applied to other difficult imaging problems,
such as imaging and sensing through scattering
and turbidmedia. For example, Pavia et al. have

applied inverse retrievalmethods in combination
with spatial and temporal information from a
linear SPAD array for tomographic reconstruc-
tion of objects hidden inmurkywater (50). More
recently, Heshmat and co-workers have acquired
data with a planar SPAD array and reconstructed
various shapes of objects obscured by a thick tis-
sue phantom (51). Their technique was referred
to as “All Photons Imaging,” directly underlining
the importance of the photon time-of-flight in-
formation that is recorded by the single-photon
camera. We note that such approaches do not
explicitly account for the physical origins of the
data. For example, temporal and spatial informa-
tion are placed on equal footing and enter in the
retrieval process without incorporation of statis-
tical models for timing jitter or surface reflec-
tivity of the objects. Future SPAD imaging will
benefit from incorporating accurate spatiotem-
poral statisticalmodels for sources, photon trans-
portmedium, and photon detectors. In the broad
regime of strong scattering, the camera will typi-
cally record an indistinct, diffuse illumination
transmitted through the medium or reflected
from the scenewith little or no obvious informa-
tion about any objects hidden behind or inside the
scattering medium. Computational techniques
are thus required to actually retrieve details about
the object. This field of research is of particular
interest for a number of applications such asmed-
ical diagnostics and imaging, as well as sensing
and imaging through fog.
With the emergence of imaging systems for

autonomous underwater vehicles, unmanned
aerial vehicles, robots, or cars, rain and fog pres-
ent important challenges thatmust be overcome.
Sonar is a well-established technology for long
range underwater imaging, but it can suffer from
low spatial resolution limited by the physics of
sound propagation in the medium. Although
high-power optical solutions can be used for
short-range imaging in relatively clear water,
the presence of underwater scatterers between
the active imaging system and the scene (e.g., the
seabed) usually produce large quantities of re-
flected photons that can mask the returns from
the scene of interest. By using a pulsed illumi-
nation source combined with sensitive single-
photon detectors, it is possible to discriminate
the photons reflected because of scattering in the
water from those (an extremely small refraction)
that actually reach the surfaces of interest. For
instance, Maccarone et al. have demonstrated
the ability to image underwater up to eight at-
tenuation lengths (52). When combining this
cutting-edge technology with advanced statisti-
cal methods inspired by our previous work (53),
substantial performance improvements could be
achieved in terms of 3D reconstruction and esti-
mation of the surface reflectivity by accounting
for the distance-induced signal loss (54). On a
related note, efforts for 3D reconstruction of
terrestrial scenes at long distances suffer from
limitations similar to those described above.
Even if the measurements are performed under
favorable (e.g., dry) conditions, the recorded sig-
nals can be considerably affected by atmospheric
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turbulence (55–57) and solar illumination (58, 59).
Again,marked improvements in detection accu-
racy (60) andmaximal observable range (61) have
been obtained via the use of adapted computa-
tional tools. The problem becomes even more
acute in the presence of fog, which is a major con-
cern for the next generation of automated cars.
It has been demonstrated that it is technically
possible to detect and analyze fog patches over
long distances, provided that the laser power is
sufficient to ensure a nonzero probability of pho-
ton reflection and a long enough acquisition
time (62, 63). In the automotive context, where
the acquisition time is intrinsically limited by the
vehicle displacement velocity, more robust and
computationally efficient strategies have been
recently proposed (51, 64), and it is clear that
future imaging systems will incorporate com-
putational models for both the propagation phys-
ics of the medium and physical properties of the
detector.

Multispectral single-photon imaging

Multispectral and hyperspectral imaging, which
are extensions of classical color (RGB) imaging,
consist of imaging a scene using multiple wave-
lengths (from four to several hundreds or even
thousands in hyperspectral images). These mo-
dalities have benefited from a robust body of
research spanning more than 35 years, from the
data collection community (65–67), and, more
importantly, from the data processing and anal-
ysis community (68–73). Indeed, such modalities
can be associatedwith awide variety of computa-
tional problems, ranging from image acquisition
(compressive sampling), restoration (denoising/
deblurring, superresolution), segmentation (clas-
sification) to source separation (spectral unmix-
ing), object/anomaly detection, and data fusion
(e.g., pansharpening). Though themain applica-

tions using (passive) multispectral imaging are
in Earth and space observation, the proven ben-
efits of imagingwithmultiplewavelengths simul-
taneously have enabled its application in the food
industry (66, 74) and a broader range of appli-
cations such as diagnostic dermatology (75, 76).
Active multispectral imaging is less sensitive to
ambient illumination thanpassive imaging,which
requires data acquisition under daylight condition
(e.g., for Earth observation).Without fast timing
capabilities, however, multi- and hyperspectral
imagers are only able to provide 2D intensity
profiles and are thus poorly adapted to analysis
of multilayered 3D structures such as forest
canopies. Multispectral LIDAR is a promising
modality that allows for joint extraction of geo-
metric (as single-wavelength LIDAR) and spectral
(as passive multispectral images) information
from the scene while avoiding data registration
issues potentially induced by the fusion of het-
erogeneous sensors. Wallace et al. have demon-
strated that it is possible to use multispectral
single-photon LIDAR (MSPL) to remotely infer
the spatial composition (leaves and branches)
and the health of trees using only four wave-
lengths (77).More recently, new experiments have
been designed to image up to 33 wavelengths
(500 to 820 nm) in free space (78) and 16 wave-
lengths underwater (79). As a consequence, we
have witnessed the development of algorithms
inspired from passive hyperspectral imagery
(3D datacubes) for analysis of MSPL data (4D
datacubes).
For instance, Bayesian methods have been

proposed to cluster, in an unsupervisedmanner,
spectrally similar objects while estimating their
range from photon-starved MSPL data (80). This
work was further developed (81, 82) to classify
pixels on the basis of their spectral profiles in
photon-starved regimes down to one photon per

pixel and per spectral band, on average (Fig. 4).
Such results are possible only by efficiently com-
bining a highly sensitive raster-scanning single-
photon system that allows for submillimeter range
resolution with hierarchical Bayesian models able
to capture the intrinsic, yet faint, structures (e.g.,
spatial and spectral correlations) of the data. A
notable improvement has beendemonstrated by
using simulation methods (see next section) to
reconstruct scenes (range and reflectivity pro-
files) with as few as four photons per pixel (with
four spectral bands and one photon per pixel, on
average) (81).
Spectral unmixing presents another challeng-

ing problem in the use ofmulti- andhyperspectral
data for identification and quantification of ma-
terials or components present in the observed
scene. Spectral unmixing can lead to improved
classification by accounting for the fact that sev-
eral mixed materials can be observed in a given
pixel. Spectral unmixing methods allow for sub-
pixelmaterial quantification,which is particularly
important for long-range imaging scenarios in
which the divergence of the laser beam cannot be
neglected.Wedeveloped a computationalmethod
for quantifying and locating 15 knownmaterials
fromMSPL data consisting of 33 spectral bands
while detecting additional (potentially unknown)
materials present in the scene (78). Again, this
work demonstrated the possibility of material
quantification and anomaly detection with as
little as 1 photon per pixel and per spectral band,
on average. It also illustrated howBayesianmod-
eling can be used for uncertainty quantification—
e.g., for providing confidence intervals associated
with estimated range profiles. As mentioned
above, although the most recent single-photon
detectors are very attractive because of their high
temporal resolution, their application to informa-
tion extraction fromwide-area scenes is hindered
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Fig. 3. Non–line-of-sight imaging. (A) Basic geometry of the problem. A
laser illuminates a scattering surface and scatters light around a wall
that hides an object from the direct line of sight. The return signal
backscattered from the hidden object is detected at a point “i” on the
scattering surface. This geometry, with a single observation point, defines

an ellipsoid of possible locations for the object. Detection of the time-
resolved transient images at multiple points on the surface allows
reconstruction of the location or even the full 3D shape of the object.
(B) An example of a hidden object with its reconstruction shown in (C).
[Panels (B) and (C) adapted from (21)]
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by long acquisition times associated with raster
scanning strategies. This is particularly limit-
ing when several wavelengths are acquired in
a sequential manner. To address this problem,
compressive sampling strategies have been in-
vestigated to achieve faster MSPL data acquisi-
tion (83, 84). Although computational methods
for image scanning systems have been proposed,
whereby a randomnumber of spectral bands can
be probed in a given pixel, the most promising
results have been obtained with a simulated mo-
saic filter (four wavelengths) whose implemen-
tation within a SPAD array could allow for the
simultaneous acquisition of multiple pixels and
fast reconstruction of range and reflectivity pro-
files. These results show how advanced com-
putational methods can be used to enhance
information extraction from imaging systems
and also improve the design of future detectors
and detector arrays.

Computational methods in the
photon-starved regime

Fromamathematical perspective, computational
imaging is formulated as finding a mapping that
reconstructs a set of parameters x, which may
have a physical meaning (or not), from a set of
measurements y recorded by an imaging or
sensing device. These parameters can take con-
tinuous values (e.g., light field intensities, object
positions, and velocities) or discrete values (e.g.,
the number objects, binary values representative
of the presence or absence of objects). Twomain
families of methods can be adopted to design al-
gorithms for data analysis—namely, supervised
machine learning approaches and statistical
signal processing approaches—although hybrid
methods can also be used. The choice of themost
suitable approaches depends primarily on the
complexity of the computational model, as well
as the computational budget available (i.e., the

expected processing time, data storage limita-
tions, and the desired quality of the information
extracted). Supervised machine learning (includ-
ing deep learning) approaches are particularly
well suited for applications where a sufficient
quantity of ground truth data or reference data
is available (85–88). Suchmethods rely on a two-
stage process, which consists of the training
stage and the test stage. Starting from a forward
model y ≈ g(x), relating the measured data y to
the unknown source parameters x, the training
stage uses a set of measurements and corre-
sponding parameters to learn the inverse map-
ping hð�Þ between the measurements and the
set of parameters to be recovered—i.e., it fits an
inverse model x ≈ hðyÞ . In contrast to model-
based statistical methods, data-driven machine
learning approaches do not rely on the knowl-
edge a forward model gð�Þ. Thus, these methods
can often be applied to complex problems where
the forward model is unknown or too compli-
cated to be derived analytically but for which
plenty of training data are available. The training
stage controls the quality of the estimation of the
mapping hð�Þ , which in turn depends on the
representational power of the machine learning
algorithm and on the quality and diversity of the
training samples. Machine learning approaches
have been successfully applied to imaging ap-
plications such as imaging through multimode
fibers (85), lensless imaging of phase objects (86),
and identification of a human pose from behind
a diffusive screen (87). SPAD cameras have been
specifically applied to identifying both the posi-
tions and identities of people hidden behind a
wall (88), imaging through partially transmissive
(89) and scattering media (51), and profiling
camouflaged targets (90). The design of reliable
machine learning approaches is currently limited
by high generalization error (i.e., machines must
be retrained for different acquisition scenarios)

and a lack of ground truth information about
the sources or the medium.
Statistical model-based methods can thus be

more attractive than data-drivenmachine learn-
ing approaches for photon-limited imaging, as a
mathematical forward model gð�Þ can be com-
bined with a statistical noise model to better fit
the data. Physical considerations, such as light
transport theory through the medium and the
detector, can often guide model choice, although
non–physically inspired approximations can be
used to make the model fitting algorithmmore
computationally tractable. When there is mea-
surement uncertainty and noise, the forward
model can be better characterized by the con-
ditional probability distribution f ðyjxÞ, which
describes the statistical variation of themeasure-
ments y for a given source parameter value x.
For fixed value y, the function lyðxÞ ¼ f ðyjxÞ,
called the likelihood function, quantifies the
likelihood that the source value x generated
the observed value y. The maximum likelihood
principle forms an estimate of x from y by max-
imizing the likelihood over x. However, themax-
imum likelihood estimate is often not unique
in high-dimensional inverse problems such as
imaging. Fortunately, additional information
about x (e.g., a priori knowledge about positivity,
smoothness, or sparsity) is often available and
can be used to improve on the maximum like-
lihood estimate. For instance, suppose f is a reg-
ularization function such that fðxÞ is small
when x complies with a priori knowledge and
is large otherwise. Then it is possible to re-
cover x by minimizing the cost functionCyðxÞ ¼
�log

�
lyðxÞ

�
þ fðxÞ: If fðxÞ can be associated

with a proper density f ðxÞº e�fðxÞ , called the
prior distribution, this penalized likelihood
estimation strategy can be interpreted in the
Bayesian formalism as a maximum a posteriori
estimation procedure. In other words, the above
minimization is equivalent to maximizing the
posterior density of x

f ðxjyÞ ¼ f ðyjxÞ f ðxÞ=f ðyÞ

where f (y) is a density that does not depend on
x. These and related likelihood-based approaches
have been adopted bymany researchers studying
low photon imaging (17, 18, 83).
The Bayesian formalism allows for the ob-

served data to be combined with additional in-
formation in a principled manner. This also
allows so-called a posteriori measures of uncer-
tainty to be derived. However, such measures
cannot be computed analytically in most practi-
cal applications because of the complexity of accu-
rate spatial correlation models, and they often
must be approximated using high-dimensional
integration. A considerable advantage may be
gained from computationally simple pixel-by-
pixel adaptation (91), and a classical approach
thus consists of approximating these measures
(e.g., a posteriori variances/covariances or confi-
dence intervals) using variational approximations
or simulation techniques. Markov chain Monte
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Fig. 4. Computational inverse probability methods to spectrally classify and depth-resolve
objects in a scene from photon-starved multispectral LIDAR images.The scene (A) was
composed of 14 clay materials of different colors. The recorded images consist of a 200-pixel–by–
200-pixel area (scanned target areas were approximately 50 mm by 50 mm), and the targets were
placed 1.85 m from the system. In (B), the first column depicts the estimated depth profile (in
millimeters), the reference range being arbitrarily set to the backplane range. The second column
shows color classification maps, and the third column depicts the spectral signatures of the most
prominent classes, projected onto the first and second axes obtained by using principal components
analysis. Each of these subplots illustrates the similarity between the estimated spectral signatures.
Rows (i) and (ii) in (B) depict results obtained with an average of one detected photon per pixel, for
each spectral band, with 33 and 4 bands, respectively. [Adapted with permission from (73)]
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Carlo methods are particularly well adapted for
inference in difficult scenarios for which the cost
function or posterior distribution of interest has
multiple modes and multiple solutions poten-
tially admissible. For instance, such methods
have been successfully applied to object detec-
tion (60), and joint material identification
and anomaly detection (78) from low-flux single-
photon LIDAR measurements.

Conclusions

Considering the rapid advance in imaging cam-
eras and sensors together with a leap forward in
computational capacity, we see enormous poten-
tial for innovation over the next several years.
Themain challenge—or the main opportunity—
at this stage is the codevelopment of sensors
and computational algorithms built around the
physical processes of the photon transport and
detection mechanisms. We have provided exam-
ples showing progress in this direction, ranging
from first-photon imaging techniques to photon-
starved hyperspectral imaging. The trend seen
in commercial cameras between 2000 and 2015,
characterized by a constant drive toward higher
pixel counts, has slowly subsided, giving way to a
different approach whereby both performance
and functionality are increased by combining
multiple sensors through computational process-
ing. Obvious examples are recent advances in
cell-phone technology, arguably one of themain
drivers behind imaging technology, that now
boasts multiple cameras and lenses providing
depth perception, improved signal-to-noise ratio,
and other functionalities such as 3D face recog-
nition.With SPAD cameras also graduallymaking
their appearance on the commercial scene, single-
photon imaging and computational techniques
offer a promising avenue for future innovation in
situationswhere previously imagingwas thought
to be impossible. We have briefly discussed ex-
amples such as imaging though denser scattering
media (the human body or fog) and full 3D imag-
ing of scenes around a corner or beyond the di-
rect line of sight. These examples are particularly
relevant in demonstrating the progress that can
be made when the photon transport models and
computational approaches are integrated with
the new generation of photon detectors. The
expectation is that over the next several years
we will witness substantial growth of computa-
tional imaging methods, driven by and also
driving new technologies such as single-photon
SPAD arrays that will revolutionize nearly every
aspect of human activity, ranging from med-
ical diagnostics to urban safety and space
missions.
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