Statistical vetoes for GEO 600

Stefan Hild (AEI, Hannover) for the GEO600-team

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

Various types of vetoes:

- 1. Nullstream-veto (using a DER_DATA_HNULL)
- 2. Noiseprojection-veto (using a record of the noise and a known TF to DER_DATA_H)

3. Statistical veto

- using NO knowledge about the detector.

- using only a statistical correlation between DER_DATA_H and a GW-free auxiliaury channel

2

Definition: VETO EFFICIENCY

Starting point:

- 2 sets of triggers from chacr
- H_i = triggers from G1:DER_DATA_H
- C_i = triggers from auxiliary channel
- each H_i and C_i constist of a few parameters (time, central_freq, duration, SNR, ...)

$$num_H = \sum_{i=1}^{i} H_i$$
 and $num_C = \sum_{i=1}^{i} C_i$.

total number of triggers in the data stretch

VETO EFFICIENCY:

(percentage of H triggers that get vetoed)

$$E_C = \frac{num_H_{veto}}{num_H} \cdot 100 \qquad [\%]$$

Definition: BACKGROUND

Determine the <u>significance of the</u> <u>statistical correlation</u> by timeshifting the data.

Background = average of vetoed events for timeshifted data.

B_c is measure of how many *potential GW events get falsely vetoed* per time stretch.

$$B_{C} = \frac{\sum\limits_{i=1}^{j} num_{-}H_{veto}(\Delta t_{i})}{j} \quad \text{[counts/time] with } \Delta t \neq 0$$

4

Definition: VETO-SNR and Use Percentage

<u>VETO-SNR:</u> Performance of a veto can be judged by the ratio of efficiency and background.

$$SNR_C = \frac{E_C}{B_C}$$

$$[\% \cdot ext{time/counts}]$$

Use percentage Ratio of vetoed H-events and used triggers from the auxiliary channel.

$$UsPer_C = \frac{num_H_{veto}}{num_C} \cdot 100 \qquad [\%]$$

DUST

G1:LSC_MID_VIS veto

6

Stefan Hild

Used 8 hours of data from summary page Sun_3 (2006-05-14 14:59:46) = still high dust concentration in GEO clenaroom.

Going forward with T_win = 10 msec.

7

Stefan Hild

High resolution time shifted analysis

No significant time offset visisble ! Applying +/- T_win.

Stefan Hild

Efficiency / Background

Stefan Hild

Application for all June 2006

• Much less glitches from dust, because dust concentration was significantly decreased.

• Partly extremely high glitchrates in LSC_MID_VIS to to excess noise in MIC-loop.

• It turned out to be useful to also apply a freq_window.

Stefan Hild

11

Epoch 1, June 2006

(MIC noise)

If we would choose the same windows as for Epoche 2 we would end up with a background of 25/day.

Too much ! => tighter windows !

BACKGROUND [acc. vetoed events] triggers in h(t) = 1257 : triggers in auxiliary channel = 27503 : maximal vetoed events in h(t) = 640

12

	Epoche 1	Epoche 2
Glitchrate MID_VIS	7000 / h	35 / h
Starttime	833155214	835023600
Endtime	835023600	835747213
T_win [msec]	1	4
Freq_win [Hz]	100	1000
Efficiency [%]	9	16
Use percentage [%]	0.4	78
Background [1/day]	2.3	0.15

LSC_MID_VIS is generated from the same PD as DER_DATA_H.

Strain back coupling doesn't explain instrumental channel coincidence,

But how for very large events ???

Stefan Hild

- Hardware injections to determine the level of backcoupling
- Injecting h-like events
- A few percent of the injections show up in MID_VIS
- To make the veto save we need to apply an additional amplitude cut. (ongoing)

Magnetometer

G1:PEM_TClb_MAG-X

Magnetometer coincidences

About 30 to 50 coinc. / 8h T_win = 10 msec No F_win

Problem: Background due to high Eventrate (= 3000 / h)

17

Efficiency – Background – Veto_SNR

Best SNR for T_win = 1 to 2 msec F_win = 800 Hz

 $\Rightarrow low efficiency \\\Rightarrow high background$

Best result so far

Not very encouraging !!!

Maybe introducing an amplitude window can increase the performances

Stefan Hild

Mains

G1:PEM_CBCTR_PWRGRID

About 10 to 30 coinc. / 8h T_win = 10 msec No F_win

Problem: Background

21

Efficiency – Background – Veto_SNR

Best compromise T_win = 5 msec F_win = 1000 Hz

Stefan Hild

22

Best result so far

Not encouraging !!!

Maybe introducing an amplitude window can increase the performances

Hourly glitches from the mains

- Could take out seconds 20 to 100 of every GPS hour.
- We would loose about 2% of duty cycle. (worthwhile?)

Veto channel	MID_VIS epoch 1	MID_VIS epoch 2	B-Field	Mains
Glitchrate in veto channel	7000 / h	35 / h	3000 / h	100 / h
T_win [msec]	1	4	1	5
Freq_win [Hz]	100	1000	800	1000
Efficiency [%]	9	16	8.0	1.4
Use percentage [%]	0.4	78	0.03	0.3
Veto-SNR [a.u.]	12	80	0.16	0.4
Background [1/day]	2.3	0.15	3.7	3.5

Propose: Only to use vetoes with a VETO-SNR >1

Application of MID_VIS for June 2006

post nullstream post MID VIS ٠ 10^{2} ٠ HACR snr 10'560 580 590 600 620 570 610 630 640 Time [h]

h(t) triggers from 2006-05-31 05:09:08 (833087362) to 2006-07-01 10:07:47 (835783681)

- Red dots without MID_VIS veto
- Black dots after application of MID_VIS veto

LSC_MID_VIS veto looks very promising:

- for high dust rate
- for low dust rate
- even on times of high MIC_loop noise
- application for all June gave good results
- TO DO: Amplitude cut to supress potential backcoupling.

• PEM_TCIb_MAG-X + PEM_CBCTR_PWRGRID:

- poor performance
- could be applied if we want to pay the price of an high background.
- maybe an amplitude cut can help?

END

$$D_{H_m} = H(time)_m \pm N \cdot H(dur)_m$$

Do we need the N?

If, yes what number should be assign to N?