Interesting commissioning results

Some intersting results from commissioning:

- Measuring bulk absorption of Suprasil 311SV
- Jumping to lower signal-recycling sideband
- Some experiments related to broadband scattering in GW interferometers

Measurement of the absorption

Strength of thermal lens proportional to absorption inside BS

Idea:

Using effect of thermal lensing to measure the absorption in BS substrate.

Observation (A+B):

Change of darkport image after lock acquisition

Simulations (C+D):

To explain observed change in the darkport image we have to introduce a thermal lens of f = 13km.

Upper limit of GEO BS bulk absorption

Thermal lensing:

$$\delta s = 1.3 \cdot \frac{\beta}{4\pi\kappa} \cdot p_{\rm a} \cdot d \cdot P,$$

Absorption:

$$p_{\rm a} = \frac{4 \cdot \pi}{2.6} \cdot \frac{w^2 \cdot \kappa}{\beta \cdot d \cdot P \cdot f_{\rm therm}}$$

Upper Limit for bulk absorption inside the GEO BS:

$$p_{\rm a} = 0.25 \pm 0.1 \, {\rm ppm/cm}.$$

$$\delta s = \text{pathlength difference}$$

$$\beta = \text{dn/dT}$$

$$\kappa = \text{thermal conductivity}$$

$$P_a = \text{absorption per lenght}$$

$$d = \text{geometrical length in substrate}$$

$$P = \text{optical power in substrate}$$

$$\omega = \text{beam radius}$$

$$f_{therm} = \text{focal length of thermal lens}$$

Lowest value ever measured @1064nm !!

This low absorption: So GEO (HF) can operate with much higher intracavity power than expected (without any thermal compensation at the BS)

Stefan Hild

4

Jumping to the other SR sideband

For various reasons we are not able to tune further down to the tuned case and then to the other sideband

Idea: But maybe we can jump to the other sideband (only 2.8 nm for MSR), or to the tuned case ???

5

Kicking MSR in a controlled way:

- Fast enough that all other loops can't recognize.
- 4 ms of acceleration and 4 ms of deceleration.

Works fine !!

Sensitivity on different locking points

Sensitivity is identical for the two different locking points.

Optical spring in GEO

Trying to measure optical spring

Idea: Trying to measuring optical spring by direct comparison of optical TF for lower and high SR sideband:

So far no success in measuring optical spring.

Scattering characteristics from different interferometer ports

During the last two years scattered light noise was found to be a limiting noise sources in GEO 600. It has often been difficult to determine the exact scattering mechanism.

Checking various interferometer ports (outside the vacuum) for scattering. Inserting a ,not moving' piece Perspex into beam.

Result: Scattering shoulder as we saw already earlier.

The scattering shoulder

Shoulder seems to show up in all present IFO configurations

Stefan Hild

GEO meeting, Hannover, March 2006

We worry just about a very small light level ! ~ 10⁻¹⁷ W (~100 photons/sec)

- The phase shift needed to create noise up to 1 kHz could be due to:
- a surface moving at 1 kHz with an amplitude of much less than the a wavelength
- a surface moving at low frequencies with a much larger amplitude (pendulum modes or microseismic)

However we have not found a convincing explanation, as it seems the motion we have is too small or too slow to produce the observed effect.

Idea: To have a controllable scattering surface.

2 different modes are required:

moving at high frequency, but with small amplitude
moving at low frequency (1Hz), but with larger amplitude

(several fringes)

Cheap solution:

Audio speaker driven by an audio amplifier

A SAME AND A DESCRIPTION OF		- dta - Buradadata	1186	
Artikel-Abbildung	Verwandte Produkte		Hoherwertige Produkte	
	1 2 3 130mm MITTEL-TIEF-TÖNER Artikel-Nr.: 369039 - 62			
	M	lodell	DS-050	
	M	Musik-/Sinusbelastbarkeit 80/40 W		
	F	requenzbereia	: h 35 - 5500 Ha	
	R	esonanz	48 Hz	
	S	challdruck	85 dB	
	Q	ts	0,420	
	v V	as	8,02	
	🔍 к	orb Ø mm	131,5 mm	
	E	inbau Ø mm	111 mm	
	E	inbautiefe Ø	72 mm	

Scattering shoulder cutoff

Driving speaker with 1Hz triangle and varying amplitude:

Result: cutoff frequency scales linearly with amplitude.

Injecting single frequency scattering

Driving speaker with single frequency of 310 / 810 Hz.

Results: - Large scattering peak at injected frequency - Huge sideband structures

Sideband structure of an injected scattering line.

Sidebands have exactly the same structure !

Idea: Maybe we can use the sideband structure to learn about the origin of the scattering.

End

Thermal lensing in the beamsplitter

- Causes scattering into higher order modes.
- Cavity needs to stay stable:

 $G_1 = 1 - 2d_2/R_1 - d_0/R_0$ $G_2 = 1 - 2d_1/R_1 - d_0/R_2.$

$$d_0 = d_1 + d_2 - 2d_1d_2/R_1.$$

 $0 \le G_1 G_2 \le 1.$

Instable for thermal lens f < 600m

Sets an upper limit on intracavity power. Shot noise!

Change of darkport mode with incav-pwr

GEO600 was initially designed for using intracavity power of about 10 kW

Our experience with scattering so far

- Differential ports are especially sensitive
- Scattering near a waist is fatal (cat's eye effect)

How to avoid trouble:

- Avoid beam waists
- If you can't avoid waists, then don't place any optics near the waist
- Use only high qualtiy optics (AR coated diode windows, ...)

20