Environmental couplings in GEO

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

Universität Hannover

At the moment GEO's sensitivity (100 –600 Hz) seems to be partly limited by :

- noises that don't couple linearly
- noises that are difficult to project
- noises driven from environmental excitation

Correlation between h(t) and seismic

In some frequency bands h(t) was limited by seismic noise from the air conditioning outdoor unit (12m distance from central building)

Correlation between h(t) and seismic

The vibrations were transmitted by rigid pipes.

Inserting some flexible tubes reduced the seismic excitation of the central building and cured sensitivity.

Afterwards no correlation between h(t) and seismic anymore.

Seismic from endstation to h(t)

Problem was solved by stiffening of an optical table.

Acoustic injections at the output bench

Injected white acoustic noise at the output bench.

Result: Some of the resonances in the sensitivity seem to be driven by ambient acoustics.

6

Two general approaches:

- Reducing the environmental noise
- Reducing the coupling to h(t)

If neither is possible and TF of couplings don't change:

Monitor the environmental noise

Reduction of environmental noises

Acoustic:

 Acoustic shielding of important components or even of whole optical tables.

Seismic / vibrations:

- Removing unnecessary noisy components
- Better seismic isolation for vacuum pumps and air fans
- Better seismic isolation of optical tables (may increase acoustic coupling)

Putting the output bench onto rubber feet

Reducing the couplings

Coupling pathes:

- Via suspension (?)
- Beam clipping
- Beam pointing on photodiode
- Scattered light

Reduction of coupling:

- Using better components (for instance more rigid mirror mounts)
- Using larger diodes (for example we are currently using a 3mm InGaAs at the darkport)
- Using properly coated windows for all important diodes
- Controlling all important beam paths (6 DOF of output optic)

Seismic injections in central building

Hitting different foundations with a hammer:2.34 to 2.38 green foundation, 2.39 to 2.42 red foundation.

11

hacrmon triggers: h(t) vs seismic

Estimating time delay

- Triggers in seismic channels are all within 20 to 30 miliseconds
- Triggers show up in h(t) with a delay of 30 to 100 miliseconds
- Frequency window has to be reasonably large

First try of vetoing seismic events: time-window = 100 msec.

Stefan Hild

- We observed several environmental noises limiting GEO's sensitivity.
- At the moment doing both: reducing the sources and reducing the couplings.
- As soon as we recognize an enviromental noise coupling to h(t) we try to eliminate it. (So far has always been successful)
- Planning for a full quiet run (at the end of the week)
- As long as we improve the detector on a daily basis couplings may change, too. Thus it is hard to veto enviromental noises reliably.