

 Questions: Why suspended optics? Why high light powers?

 Examples for problems caused by radiation pressure effects

 Examples from <u>useful applications</u> of radiation pressure effects

Why suspended optics?

- Ground moves about 1e-11m (at 100 Hz)
- We want to measure 1e-19m (at 100 Hz)
- ⇒ required suppression = 8 orders of magnitude !!

Transfer function of a single pendulum

4

Decouple optics from seismic by suspending

A GEO600 triple suspension

Stefan Hild

9

DPG-Tagung Frankfurt, March 2006

- We use an optical readout (Photodiode)
- The time between two photons reaching the photodiode is not constant (Shotnoise)

$$N_{shot} \propto \sqrt{P_{opt}}$$

 $Signal_{GW} \propto P_{opt}$
 $SNR_{GW} \propto \sqrt{P_{opt}}$

Optical power helps !

G

Radition pressure effects onto MC1

- Suspended ring cavity of about 8m round-trip length
- intracavity power = 6kW (10 kW)
- low weight mirrors = 0.86 kg
- Force F_{RP} = 35 uN (60 uN) per mirror
- total lenght change during power buildup caused by radiation pressure = 5.2 um (8.5 um)

Macroscopic effect !

Radition pressure effects onto MC1

Problem:

Saturation of the limited actuator range prevents lock acquisition.

Solution:

Apply a bias force to the mirrors for acquisition and reduce this force in lock corresponding to the power build-up.

(nearly zero force when cavity a operating point = low noise)

Radiation pressure on beamsplitter (BS)

Problem:

Power fluctuations in the power-recycling cavity at frequencies in the detection band.

 \Rightarrow Change of the radiation pressure \Rightarrow BS is shifted

 \Rightarrow east arm gets shorter \Rightarrow north arm gets longer

 \Rightarrow Indistinguishable from gravitational wave.

Radiation pressure on beamsplitter 2

Projections to H for 2006-02-16 04:20:00

No problem at the moment due to active power stabilisation

Stefan Hild

DPG-Tagung Frankfurt, March 2006

Using photon pressure effect to calibrate GEO600 sensitivity (From Volts/sqrt(Hz) at photodiode to mirror displacement in meter/sqrt(Hz))

Wavelength: 1035 nm Max. power: 1.4 W Weight of mirror: 5.6 kg

A photon pressure drive can (in principle) very easily be calibrated using:

$$F = 2 \; \frac{P}{c}$$

Injecting a photon pressure line

Can measure the effect of 1mW modulated light at f=100 Hz.

Independent check of GEO600 calibration

Good agreement of photon pressure calibration and the usually used calibration scheme based on electrostatic actuators.

In a detuned suspended cavity the radiation pressure depends on the position of the mirror.

 \Rightarrow Opto-mechanical coupling.

⇒ Resonance frequency can be influenced by tuning and optical power.

Optical spring in GEO for different powers

Stefan Hild

Optical spring in GEO for different tunings

So far we haven't been able to measure the effect.

• Radiation pressure is an import player in GEO600 !!

Radiation pressure effects cause problems :

- Macroscopic mirror movement
- Displacement noise due to power fluctuations

• But we can also **profit** from radiation pressure effects:

- Photon pressure calibrator
- Opto-mechanical resonance ('optical spring')

End