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What do I want you to
take with you from this lecture?

< How can we actually trick Heisenberg?

< Get an intuitive understanding of Quantum noise and
how to reduce it in our instruments.

< An easy tool ‘graphical quadrature picture’.

S What I want to avoid: 1 hour of filling the blackboard
with complicated Quantum mechanics.
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Two Basic principles of GW detector

< 1. You need to make your test masses very quiet
(quieter than the signal you want detect).

< 2. You need to read out the test mass positions with
very high accuracy, without introducing ‘too much’
noise due to measurement itself.

S Photon shot noise is a sensing noise, photon radiation
pressure noise is a back-action-noise.
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The Standard quantum limit

< Standard Quantum Limit of a free mass is equivalent to
Heisenberg uncertainty.

< Arises when one tries to detect gravitational wave by
continuously measuring free-mass displacement, since

[x(2),x(¢')]=0

» Precise measurement on x has to perturb p. Perturbation in p converts to
future error in x.

< In our case: Light fields enforce Heisenberg uncertainty

through complementarity between Shot noise and Radiation
Pressure noise.
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Overview

< Introduction: Quantum noise, Standard Quantum Limit,
Vacuum fluctuations, ‘Ball-on-a-stig’, Quadrature Picture.

2 The easiest way to beat the SQL: Varaiational Readout
» Example: AEI-10m interferometer

< The best quantum noise reduction technique for second
generation GW detectors: Squeezed light injection

» How to make squeezed light?
» Example: GEO-HF and Einstein telescope

< Optical rigidity
» What is an optical spring?
» Optical Bar and Optical Lever schemes
» Local Readout scheme for Advanced LIGO

2 Speed meter configurations
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Some remarks ahead ...

2 'Quantum-non-demolition” measurements are not a new topic
(Braginski, Khalili and others theoretically developed QND-
techniques already decades ago), but it becomes more and
more a hot topic, as the experimental realisation starts to come
true. ©

< During the next hour I would like to give you an overview of

the QND techniques that I believe are relevant for GW

observatories. (of course this reflects my personal view and other people might set
the focus on a different subset of configurations ...)

2 Please note: not all of the concepts I will talk about are

considered to be real 'QND’ experiments. However, all of them
reduce Quantum noise and are therefore also called ‘Quantum

noise reduction’ (QNR) techniques.
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= What is quantum noise?

VIA VERITAS VITA

2 Quantum noise is comprised of photon shot noise at high frequencies
and photon radiation pressure noise at low frequencies.

2 The photons in a laser beam are not equally distributed, but follow a

Poisson statistic.

. wavelength
' Vv
N INGE 1\/5/
time sn o L\ 2 Pt optical .
N power i
S ded Mirror{nass Arm length
— uspmr;rf 1 AP Laser
= | A=

Photodiode

X

photon radiation pressure noise photon shot noise
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z The Standard Quantum Limit (SQL)

VIA VERITAS VITA

. . . . 1 SQL for a simple Michelson {length = 10 km, mirror mass = 10 kg)
<2 While shot noise contribution 10° e — e
decreases with optical power, == shot noise, P = 10000 W
radiation pressure level o ONC radiation pressure, P = 10000 W
increases: 10 === quantum noise, P = 10000 W
lenath = == shot noise, P = 1000000 W i
waveleng T 10.21 """" radiation pressure, P = 1000000 W |
% £ == quantum noise, P = 1000000 W |
hen (f) 1 [ heA @ — SQL
st L.\ 27 P+t optical £10” Ky :
N power 5 ]
AN ] ]
Mirror mass ™M 1ength -2 MR- -
\ 10 :
heo () 1 | hP ]
_— 24
rp 2 3 10 . L . MR e
J2LV 2mcA 10" 10" 10" 107
Frequency [Hz]

» The SQL is the minimal sum of shot noise and radiation pressure noise.

» Using a classical quantum measurement the SQL represents the lowest achievable
noise. V.B. Braginsky and F.Y. Khalili: Rev. Mod. Phys. 68 (1996)
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: Scales of SQL
Experiments

VIA VERITAS VITA

Fig. 3. Experimental cavity optomechanical systems.
(Top to Bottom) Gravitational wave detectors [photo
credit LIGO Laboratory], harmonically suspended gram-
scale mirrors (28), coated atomic force microscopy canti-
levers (29), coated micromirrors (14, 15), SiN; membranes
dispersively coupled to an optical cavity (31), optical
microcavities (13, 16), and superconducting microwave
resonators coupled to a nanomechanical beam (33). The
masses range from kilograms to picograms, whereas fre-
quencies range from tens of megahertz down to the hertz
level. CPW, coplanar waveguide.

T.J. Kippenberg and K. J. Vahala,
Science 321 (2008) 1172
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The Mathematical approach

< Quantitative description of an electrical field E at the position r
and time t:

E(r,t) = Bo [a(r)e ™ — a(r)*¢*"] p(r)
— A

a(r) S a,o( ) 1¢(‘7;) angular frequency polarisation

complex amplitude \phase

2 We can now introduce two new ‘properties’:

Xi(r) = a™(r) + a(r)
Xo(r) =ila™(r) — a(r)]
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The Mathematical approach (2)

X1 (7') =a’ ("’) + a('r) amplitude quadrature
X2 ("') =1 [a* (7”) — CL("‘)] phase quadrature

< Using X; and X, we can rewrite the electrical field:

E(r,t) = Fy[X; cos (wt) — Xgsin (wt)] p(r,t)

< Finally, we have to introduce a quantisation of the electrical
field:

Xl — il + a amplitude quadrature operator

X2 =1 (&T — &) phase quadrature operator
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> Let’s try to convert the
quadrature idea into a picture:

Phase
Quadrature

2 A laser sends out light with an
average frequency and
amplitude. => This is the blue
arrow.

< However, individual photons
have a uncertainty, i.e. may
have slightly different
frequency or amplitude. =>
This is indicated by the red Y Amplitude
ball. AX1 Quadrature

Stefan Hild VESF Summer School, July 2010 Slide 13



UNIVERSITY

‘ /A LA EOW @'

Ball on a stick and Heisenberg

" Phase Coherent State Y~ Phase Squeezed State )

Quadrature Quadrature

8

VIA VERITAS VITA

|
|
|
|
|
|
|
|
|
|
|
|
|
l

Amplitude Amplitude

I |
\ AX ] Quadratuy\ AX ; Quadrature/

Heisenberg uncertainty principle: 5 ~
there is a minimal area of ball AXlAXQ > 1
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Examples of ball on the stick
N\ N\ )
x4 x
X1> . )(1> X1>
9 Coherent state ) L Vacuum state ) L Phase squeezing Y
4 '} N\ N\ )
X, A
X2A X3
‘ >
X > X>
Phase squeezed X, 1
\ vacuum Y \Amplitude squeezing) @uadrature squeezed Y
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: Vacuum Fluctuations

VIA VERITAS VITA

< How does 'Ball-on-the-stick’
fits into the interferometer
picture?

< An intuitive picture is to

consider:

» A vacuum state is entering the
interferometer from the
photodiode.

> It is then ‘reflected from the
interferometer’ and is detected
together with the GW signal on
the main photodiode.

Vacuum
fluctuations
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GW signal in Quadrature picture

(Shot noise A 6W signal shov@ ul

shows up in up in phase
both quadrature il
quadratures £ w0

Phase [Deg|

No correlations \No correlations /

- J

n2 : Abs

n2: Phase [Deg|] ——

< If you change the length of a cavity around its resonance, the
slope of the amplitude is zero, while the slope of the phase is
maximal. Therefore, GW signal adds to phase quadrature.
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‘ Where does Radiation pressure
noise come from?

VIA VERITAS VITA

NVithout radiatiom

pressure

Phase
fluctuations

NSNS\ S
M.f\.f\'

Amplitude
fluctuations

GW

No correlations

- J

Stefan Hild VESF Summer School, July 2010 Slide 18



UNIVERSITY

o

Where does Radiation pressure

'
noise come from?
/Without radiatiorﬁﬂ?adiation pressura =) AmplltUde fluctuations
pressure included act onto Suspended
TGW mirror.
GW 4 I"E4/(mf) Phase : :
4 uoase < Mirror is moved and
E, 1E; SO, gives contribution in
S Amplitude the phase quadrature.
! I‘ E, |1 —I‘|—> E, fluctuations &=
e 2 This new contribution:
| Radiation pressure > is correlated to E,
No correlations | introduces correlation _
\_ Y, J > depends on the mirror
Mass
» Its magnitude goes
with 1/f2
Stefan Hild VESF Summer School, July 2010 Slide 19
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Where does Radiation pressure
noise come from?

VIA VERITAS VITA

ﬁVithout radiatiorﬁﬁiadiation pressua 10_“ SQL for a simple Michelson {length = 10 km, mirror mass = 10 kg)
pressure included ~ = shot noise, P = 10000 W ]
ol ONC radiation pressure, P=10000 W |
GW 107 ¢ = quantum noise, P = 10000 W
== shot noise, P = 1000000 W
1/2 —_ s ) 1
'} I E1I(mf2) T 10_21 """" radiation pressure, P = 1000000 W ||
£ == quantum noise, P = 1000000 W |
AE, =3 —saL
-22
e § 10
/ v »
' ' 10 i
\ /7
\\ //
_ Radiation pressure 10" "'-"(-'1 e
No correlations | introduces correlation 10° 10 10 10
K ) \ j Frequency [Hz]

< At high frequencies radiation pressure is negilicable (due to 1/f2).

< At low frequencies radiation pressure is dominant
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Overview

< Introduction: Quantum noise, Standard Quantum Limit,
Vacuum fluctuations, ‘Ball-on-a-stig’, Quadrature Picture.

2 The easiest way to beat the SQL: Varaiational Readout
» Example: AEI-10m interferometer

< The best quantum noise reduction technique for second
generation GW detectors: Squeezed light injection

» How to make squeezed light?
» Example: GEO-HF and Einstein telescope

< Optical rigidity
» What is an optical spring?
» Optical Bar and Optical Lever schemes
» Local Readout scheme for Advanced LIGO

2 Speed meter configurations
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Surpassing the SQL at AEI-10m:

8

Variational Readout
Homodyne
ﬂ?adiation pressure\/ Variational readout \ e
included
GW
A 1'2E,/(mif?)
AE,
!
- . phase shifter
Radiation pressure Change of readout
introduces correlation quadrature: cancelation out
\ /\ of green arrows / \. J

< Variational Readout enables us to partly cancel radiation
pressure noise by selecting the appropriate readout quadrature.

< Readout quadarture (angle) can be chosen by phase shifter
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¥/ Surpassing the SQL at AEI-10m-Interferometer

10_ ?. - S— ......A.,........,....,.A...“.A.“,.A,.A.A.,.“...A......A,.....H.......A,...A...............A.z............A........A.A.......E .....
3 — SQL =, sssss QN
. —_— seis susp
- mirror = coating
— el TN\ A™» Oy e thermo-optic
5:' 10 "3 . -- freq «--=== intensity
+~ = . '~.. ------ end-mirror cavity
€ N Y S\ - Total classical noise
E — “0‘ ”‘.' lllllllllllllll . llllllllllllllll
2 10" .- . i i piiiii il
o 3 > B
0] 3 .,
o - %
w - 2
© S
.Q .’.
§ 10 20 b SONER SRR N N SIS S WS o SO SO
- S roeuoe? e Casanan
\ ....... nl
10 T T 11T T — T T T 1171 T T T T T 11T T T ChangeOfreadout
5678 2 3 4 5678 2 3 4 5678 2 3 4 5 i
10 100 1000 quadrature: cancelation
Frequency (Hz) of green arrows

2 Using Variational readout, we will be able to completely cancel
the radiation pressure noise at ONE frequency (100Hz) and
surpass the SQL a factor 2 to 3.

& To cancel the radiation pressure noise a all frequencies, we would
need a frequency dependent angle of the readout quadrature
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Overview

< Introduction: Quantum noise, Standard Quantum Limit,
Vacuum fluctuations, ‘Ball-on-a-stig’, Quadrature Picture.

2 The easiest way to beat the SQL: Varaiational Readout
» Example: AEI-10m interferometer

2 The best quantum noise reduction technique for second
generation GW detectors: Squeezed light injection

» How to make squeezed light?
» Example: GEO-HF and Einstein telescope

< Optical rigidity
» What is an optical spring?
» Optical Bar and Optical Lever schemes
» Local Readout scheme for Advanced LIGO

2 Speed meter configurations
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What squeezed light is available ?

2 Over the past decade, ol
squeezing made 46 F e
. d|b|e progress 48 | vacuum noise (shot-noise)
incre : o | .
. 10dB of squeezing
< We have now all we S s
need' % :58 i squeezed noise
> Squeezing at all s o
frequencies of interest (as Z 64 1
low as 1 Hz) pdl:
» Squeezing factors > 10dB, ;(2) : detector dark noise
improves the quantum S
noise by a factor 3 (Or iS 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time [ms]
equivalent to a power e
increase of 10) Vahlbruch et al., PRL. 100, 033602
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- Injecting squeezed light into an interferometer

( No Squeezing V No Squeezing\ / With phasev With Phase \

GWT Squeezing Squeezing
GW aE, 4
'T aE,
AE, AE:
i L——>E, ¢ ———>E,

-
Bl

~_-

KLOW frequency AHigh frequency) \ Low frequency /\High frequency /
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- Injecting squeezed light into an interferometer

/" NoSaueezing "\ NoSqueezing \ /" \iphase Y  WithPhase )
GVV T SqueeZing SqueeZing " SQL for a simple Michelson (length = 10 km, mirror mass = 10 kg)
10 T r
== shot noise, P = 10000 W
GW aE, 'T‘ SN | radiation pressure, P = 10000 W
0F === quantum noise, P = 10000 W
a E = == shot noise, P = 1000000 W
ﬁ 1 T oal NN radiation pressure, P = 1000000 W
g — quantum noise, P= 1000000 W
: e —saL
A 'E 10.21
2 AE2
/ -7 A \\ Pt Bl 10'" ---------------------------
U 7’ ~
F Lo sE S rand: :
: ) See - 10 5
N , 10 10 10 10

~_-

Frequency [Hz]

\Lowfrequency AHighfrequency) \ Low frequency /\High frequency /

< Injecting phase squeezing into detector output:
» High frequency sensitivity improved ©
» Low frequency sensitivity decreased ®
2 Phase squeezing gives in principle the same as a power increase.

< With pure phase squeezing you cannot beat SQL!
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T h e G - O 6 O O | : T ; - 3 beam flom GEG. g
squeezer
(schematic)

VIA VERITAS VITA

Baffles

‘ > —
I ‘D \-s e - - 1 Mode \
v (green phase) n e cleaner,

) MC532

50[50 coherent conltrol beam |
m ! W

X Allgnmentbeam I w} /
W! |
l ‘ 7”,,,

[ )

ngfﬁﬂ S

PBS Squbezed beam . 7\'/2

Squ{:zed ﬂ
. nght 6 é /\‘PD—Homo1
Images courtesy to GEO600 squeezing Group Source "oy P> Into N —b

length  Alignment

weaq

“ 103e350 [R207

PD-Homo2
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. _ _ i
How to inject squeezed light into GEO?=

=) _Squeezed_llght IS U Sy
injected via a 2%
Faraday rotator 1o 19
into the back of the "o, ooy K ohe
interferometer. 1001 Q5— - 57/>¥ Y D
. - : % 2%
O Itis then reflected | wg—> A
. DWS 1 utput
from the signal —y T st
recycling mlrror Injection/AIignmentE @
(MSR) and %’";
det_ected at t_he 70, [ Total loss: 20% J
main photodiode R — i a
(PD). son |l Dy~ -2 9P
. . Squeezing-breadboard Isolator Homodyne
2 Squeezing requires
|OW |OSS€S . A. Khalaidovski: nttp://gw.icrr.u-tokyo.ac.jp/gwadw2010/program/2010_GWADW_Khalaidovski.ppt
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Squeezing and losses

< If squeezed

o — _
light is lost it is T - _
: 15F F i i PE—
replaced agaln | antisqueezed vacuum noise ()
by vacuum 0 -}
fluctuations. 2 st :
g vacuum noise (@)
< For GEO-HF we |2 9} :
start with 10dB. | 2 = e B
=> 20% I_OSS -10 — - - squeezed vacuum noise
=> effective .
. asEF
quantum noise / :
reduction of 656 0 10 20 30
6dB Introduced additional loss [%]

Image: H. Vahlbruch, PhD thesis.
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VIA VERITAS VITA

Strain [1/sqrt(Hz)]

{ = DC+tuned

Frequency [Hz]

GEO Aug.2009

+6dB squeezing
——— 10% signal rec. mirror
20W input power
= = = coating thermal
== BS thermo-refractive
sum

Stefan Hild

VESF Summer School, July 2010
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Frequency dependent Squeezing

If squeezed light should
reduce shot noise and
radiation pressure
noise, you need a
frequency dependent
squeezing angle:

Hz]

QuaNtum nNoise i

~Quantum noise in X2

Linear noise spectral density [1/

] 20 dB squeezed
= Phase squeezing at PN NG W
high frequencies. angle N %
_ _ BEERY A EEERNE :‘jj‘:#»;_ il
< Amplitude squeezing ol e s
at low frequencies ‘ 19 100 Tk 10k

Frequency [HZ]

With frequency dependent squeezing it is possible to surpass the SQL.
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Creating frequency dependent

Squeezing with filter cavities

o
£
| S C h |k k Einstein Telescope >
g . . Xylophone optlon (ET-C) ”” Number of 'long' suspensions = 21
" ” Grn-LF (ITM, ETM, SRM, BS, PRM of LF-IFOs)
Each detector (red, green and blue) " ” of which 12 are cro genic.
consists of two Michelson inter- ” ”

ferometers. The HF detectors need " ,," Nu?:;r gfs‘n;[;maz sFl::spfr:‘ssiOfns
one filtercavity each, while the LF Ii(nera;' filt’erca:ir;ies a)n:j 54 fg:

detectors require 2 filter cavities . . .

t lar filt ti
each due to the use of detuned riangularifter cavities
signal recycling. 7

PRM '

10—

Filter cavity

: Squeezer A
PD S ':( (@) Red-LF ed""#D[lﬁ

< We can realise frequency dependent squeezing by reflecting it
on a cavity, i.e. making use of the cavity’s dispersion.
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Overview

< Introduction: Quantum noise, Standard Quantum Limit,
Vacuum fluctuations, ‘Ball-on-a-stig’, Quadrature Picture.

2 The easiest way to beat the SQL: Varaiational Readout
» Example: AEI-10m interferometer

< The best quantum noise reduction technique for second
generation GW detectors: Squeezed light injection

» How to make squeezed light?
» Example: GEO-HF and Einstein telescope

< Optical rigidity
» What is an optical spring?
» Optical Bar and Optical Lever schemes
» Local Readout scheme for Advanced LIGO

2 Speed meter configurations
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What is an Optical Spring?

< Detuned cavities can be used to

create optical springs. - —r—
< Position change of the mirror => Detuned

power changes => radiation Laser suspended

pressure force changes. E | ( cavity ) I
< Optical springs couple the mirrors |

of a detuned cavity with a spring X -

constant that can be as stiff as power unstable optical spring

diamond. \

< Can be used as low-noise
transducer for GW signals to mirror - X
movement in the local frame.
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Beating the SQL with advanced detectors?

< Detuned Signal Recycling

also creates a optical spring
resonance => quantum
noise shows two ‘bumps’,
the optical spring (at low
frequencies) and the pure
optical resonance (at high
frequencies).

< Actually advanced LIGO and
advanced VIRGO could beat e T
the SQL, if the quantum f [Hz]

10—22 -

broadband
- narrowband

23|
10 ; SQ<

Noise Spectral Density [1/VHz]

noise at low frequencies Image H. Mueller-Ebhardt, PhD thesis
would not be coverd by
other noise sources.
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Optical Bar configurations

< Very light mirror (MX) is coupled
to the movement of EM1 and
EM2 via optical springs.

| EM1

< MX can then locally read out by a
small local meter without
disturbing the quantum states in
the main instrument (QND

measurement). . x _—
‘ .

< Split between GW transducer and E "HJ\F% ZI
readout allows separate - -
optimisation of these two
systems.
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Optical Bars and Optical Levers

Laser

| EM1

Optical Bar

EM2

ocal readou

t

Nonli-

near meter for the gravitational wave
antenna”,Phys. Lett. A 218 (1996).

V.B. Braginsky and F.Y. Khalili:

EM1

Optical Lever

“The ‘ptical lever’ intracavity

readout scheme for gravitational-wave
antennae”,Phys. Lett. A 298 (2002).

F.Y. Khalili:

< Optical lever: introducing arm cavities increases the movement of
MX by the Finesse of the arm cavity.

S. Hild

STFC AF application, February 2009
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More realistic Designs for an Optical Lever

1 Em1
S.L.Danilishin and F.Y. Khalili: RC1
“Practical design of the
optical lever intracavity

topology of GW detectors”,

Phys. Lett. D73 022002

(2006).

IM1

local readout

RC2

Build symmetric optical levers => make use of common mode noise rejection.
Use recycling techniques, such as power recycling.

Increased number of components => more complex couplings => harder to control.
KEYPOINT: Get the local readout to the required sensitivity.

O 0O O O

S. Hild STFC AF application, February 2009 Slide 39
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Local Readout for Advanced LIGO

< While optical Bars and levers
require a complete redesign of the
interferometers, so-called ‘local
readout’ is compatible within
advanced LIGO infrastructure

< Atlow frequencies ITM and ETM
are rigidly connected. laser |

< At low frequencies GW signal is not IT]M H

in differential arm length, but in ITM ﬁ o
movement (local frame). '

A/

< Use a separate laser system to read Rehbein et al: PRD 76, 062002 (2007)
out the position of the ITM.
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Local Readout for Advanced LIGO (2)

How does local readout for Advanced — 1 carrer output
LIGO Work? 2"¢ carrier output

> At low frequencies: the arm
cavity mirrors are ‘rigidly’
connected by optical springs =>
GW does not change the distance
between ITM and ETM. However,

GW signal is imprinted on ITM 1
10°

A

o
N
N

Signal-transfer function
o
N
w

LN

(@
N
N

movement (in respect to BS),
which and can be read out by

additional green laser. o
]]]]] 5 u H

f [Hz]

< At high frequencies: no optical
spring present => ITM and ETM g
can move independenﬂy. Rehbein et al: PRD 76, 062002 (2007)
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Local Readout for Advanced LIGO (3)

—

°
N
parg

< Technique allows to increase
low frequency sensitivity.

—— w/ local meter

— - w/o local meter

—

S
\"
N

< In a second step the Signal-
Recycling can then be re-

Noise Spectral Density [1/VHz]

tuned to slightly higher 10
frequency.
10—24 R . N , R
> Win at low and high 1o’ i 10°
frequencies. => Rehbein et al: PRD 76, 062002 (2007)
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Overview

< Introduction: Quantum noise, Standard Quantum Limit,
Vacuum fluctuations, ‘Ball-on-a-stig’, Quadrature Picture.

2 The easiest way to beat the SQL: Varaiational Readout
» Example: AEI-10m interferometer

< The best quantum noise reduction technique for second
generation GW detectors: Squeezed light injection
» How to make squeezed light?
» Example: GEO-HF and Einstein telescope

< Optical rigidity
» What is an optical spring?
» Optical Bar and Optical Lever schemes
» Local Readout scheme for Advanced LIGO

2 Speed meter configurations
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Speedmeter 1

< So far we have only considered GW detectors that
measure the position of the test masses.

< So-called speed meters have been suggested to be
able to cancel radiation pressure noise.

> Idea: Measure the position difference after time delay.

<2 In principle this is then the same as measuring the
speed of the testmass.

< How can we realise a speed-meter?

Stefan Hild VESF Summer School, July 2010 Slide 44
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o

Speed meter 2

Image: H. Mueller-
Ebhardt, PhD thesis

Hz]

Noise Spectral Density [1/

1072 ——

F Image: H. Mueller-

t Ebhardt, PhD thesis '

speed meter
broadband
- narrowband

SN

10"

10°
f [Hz]

2 Speedmeter can in principles cancel radiation pressure noise to a
large extend and surpass the SQL over a wide frequency range

Stefan Hild

VESF Summer School, July 2010
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