

LIGO 3 Strawman Design, Team Red

B. Barr¹, A. Bell¹, C. Bell¹, C. Bond², D. Brown², F. Brueckner², L. Carbone², K. Craig¹,
A. Cumming¹, S. Danilishin³, K. Dooley⁴, A. Freise², T. Fricke⁴, P. Fulda², S. Giampsis⁵,
N. Gordon¹, H. Grote⁴, G. Hammond¹, J. Harms⁶, S. Hild^{1,*}, J. Hough¹, S. Huttner¹, R. Kumar¹,
H. Lück⁴, N. Lockerbie⁷, J. Macarthur¹, I. Martin¹, P. Murray², S. Reid¹, S. Rowan¹,
D. Shoemaker⁸, B. Sorazu¹, K. Strain¹, S. Tarabrin⁴, K. Tokmakov¹ and N. Voronchev³

¹ SUPA, School of Physics and Astronomy, The University of Glasgow, Glasgow, G128QQ, UK ² University of Birmingham, Birmingham, B15 2TT, UK ³ Moscow State University, Moscow, 119992, Russia ⁴ Max–Planck–Institut für Gravitationsphysik and Leibniz Universität Hannover, D-30167 Hannover, Germany ⁵ University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA ⁶ California Institute of Technology, Pasadena, California 91125, USA ⁷ University of Strathclyde, Glasgow, G11XQ, UK ⁸ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Overview

Strawman Red Design Overview				
Subsystem and Parameters	Advanced LIGO Baseline Design	Strawman Red Design		
Sensitivity				
Binary Neutron Star Inspiral Range	200 Mpc	614 Mpc		
Anticipated Strain Sensitivity	$3.5 \cdot 10^{-24} / \sqrt{\text{Hz}} \otimes 300 \text{Hz}$	$1.2 \cdot 10^{-24} / \sqrt{\text{Hz}} \otimes 250 \text{ Hz}$		
Instrument Topology				
Interferometer	Dual-recycled Michelson	Dual-recycled Michelson		
	with Armcavities	with Armcavities		
Quantum Noise Reduction	n.a	Frequency-dependent		
		input squeezing		
Laser and Optical Parameter	rs			
Laser Wavelength	1064 nm	1064 nm		
Optical Power at Test Masses	730 kW	730 kW		
Arm Cavity Finesse	450	450		
Signal Recycling	T = 20%, tuned	T = 20 %, tuned		
Squeezing Factor	n.a.	20 dB		
Filtercavity (FC) length	n.a.	300 m		
FC Detuning	п.а.	-16.8 Hz		
FC Input Mirror Transmittance	п.а.	425 ppm		
Squeezing Losses	n.a.	9% + 30 ppm roundtrip in FC		
Test Masses and Suspension	5			
Mirror Material	Fused Silica	Fused Silica		
Main Test Mass Diameter	35 cm	55 cm		
Main Test Mass Weight	42 kg	160 kg		
Masses in Main Quad (from top)	22 kg/22 kg/40 kg/40 kg	44 kg/66 kg/120 kg/160 kg		
Masses in Reaction Chain (from top)	22 kg/22 kg/40 kg/40 kg	22 kg/22 kg/40 kg/40 kg		
Total Mass of a Main Suspension	250 kg	520 kg		
Length of Final Suspension Stage	0.6 m	1.2m		
Fused Silica Fibre Diameter	$400\mu\mathrm{m}$	566µm		
Fibre Diameter at Bending Point	800 µm	1624µm		
Coating Noise Reduction				
Improvement Factors	II.8.	factor 1.6 from increased beam		
		size PLUS factor 2 from either		
		(i) better coatings, OR (ii) Khali		
		cavities, OR (iii) waveguides		
Operation Temperature	290 K	290 K		
IM/EM ROC	1934/2245 m	1849/2173 m		
IM/EM spotsize	5.31/6.21 cm	8.46/9.95 cm		
Khalili cavity length	II.8.	50 m		
Gravity Gradient Noise				
Assumed Seismic Level	???	LLO ETMX, 90th percentile		
A A A A A A A A A A A A A A A A A A A		F		

Task description

Email from Eric Gustavson to LSC-all from 25th Oct 2011: During the last day of the LVC meeting in Gainsville there was a discussion session chaired by Rana Adhikari (chair of the Advanced Interferometer Configurations group) in which it was proposed that three teams be created to work through the details of three different "straw man" configurations for possible 3rd generation detectors. This design work would be followed by a competition comparing the different approaches. This is not a "real" competition for funding but instead an exercise to focus our thinking about what research and development we will need to do over the next few years to be in a position to build the next detector.

Some working assumptions

- The cost of the Advanced LIGO upgrade program was assumed to be limited to a maximum range of 50 to 100 million USD for all interferometers together.
- From the previous point one can deduce, that the considered upgrades have to use to a large extend the same vacuum infrastructure as Advanced LIGO. Therefore we assumed that moderate changes of the vacuum system in the central and end stations will be possible, but assumed that no changes to the 4 km long vacuum tubes are possible.
- In addition we assumed that the seismic pre-isolation system is off limits, as replacing it would probably not fit within the targeted budget.
- Regarding the anticipated timeline we assumed that all technologies included in our design should be mature enough to be compatible with an installation in 2018, assuming we start now with the required R&D and carry out the required prototyping over the next 5 years.
- Another assumption we made was to keep the test masses and their suspensions at room temperature.
- Due to the current lack of practical experience with compensation of thermal lensing effects in the few hundred kilowatt range, we also assumed that the Advanced LIGO upgrades will initially not use any higher circulating light power as in the Advanced LIGO baseline.
- Due to the limited time frame available for the strawman exerise we focussed our efforts nearly entirely on evaluating the 'fundamental' noise sources and in most cases did not consider implications on technical noise sources, such as control noise etc.
- Since at the current stage our focus was sent on identifying useful technologies for advanced LIGO upgrades, so far we did not perform any detailed parameter optimisation (on the percent level), to 'squeeze' the last few MPc of binary neutron star inspiral range out of Strawman Red.

To avoid misunderstandings ...

Please note that all these assumptions mentioned above should just be seen as a working hypothesis for the Strawman Red design. Other teams will have chosen different working assumptions and may have included techniques in their design which we may have disregarded. This shows that at the current stage of the design process it is too early to exclude certain technologies and we should rather aim to find design options including a variety of different technologies and push the corresponding R&D efforts. Which technology will be used in the end for the Advanced LIGO upgrades will then become clearer and clearer over the next five years. Especially the experience gained during the commissioning of Advanced LIGO will help to identify the technologies providing the most robust and realistic design.

So please, see the rest of this document as an subjective example of what the Advanced LIGO upgrades **MAY** look like and not what they **WILL** or **WILL NOT** look like! The key task at the current stage of the progress is to identify and push forward the R&D required for allowing the advanced LIGO upgrades to be ready by the end of this decade.

Suspension Thermal Noise

Boosted aLIGO Quad with 1.2m long last stage and 160kg test masses.

(a) aLIGO QUAD

(b) LIGO-3 QUAD

Test Masses and Suspensions	i	
Mirror Material	Fused Silica	Fused Silica
Main Test Mass Diameter	$35\mathrm{cm}$	$55\mathrm{cm}$
Main Test Mass Weight	42 kg	160 kg
Masses in Main Quad (from top)	22 kg/22 kg/40 kg/40 kg	$44 \mathrm{kg}/66 \mathrm{kg}/120 \mathrm{kg}/160 \mathrm{kg}$
Masses in Reaction Chain (from top)	$22 \mathrm{kg}/22 \mathrm{kg}/40 \mathrm{kg}/40 \mathrm{kg}$	$22{ m kg}/22{ m kg}/40{ m kg}/40{ m kg}$
Total Mass of a Main Suspension	$250\mathrm{kg}$	$520 \mathrm{kg}$
Length of Final Suspension Stage	0.6 m	1.2 m
Fused Silica Fibre Diameter	$400\mu{ m m}$	$566\mu{ m m}$
Fibre Diameter at Bending Point	$800\mu{ m m}$	$1624\mu\mathrm{m}$

Suspension Thermal Noise

Suspension R&D

- Utilising the full space within the BSC envelope requires the lifting the entire ISI and QUAD pendulum by approximately 75 cm. Finite Element analysis needs to be performed in order to ensure that a suitably stiff structure can be fabricated which has high resonant modes (>100 Hz). A longer suspension will also require a change to the cartridge installation procedure.
- The techniques necessary to pull and weld 5 mm diameter fused silica fibres with sufficiently short neck and stock needs to be further developed. Initial tests appear promising but suitable tooling and an extension to the pulling machine need to be proven. Furthermore, the possibility of using a factor of 2 higher stress in the fibres must be fully assessed and the parameter space explored with 40kg metal test suspensions.
- Further Finite Element Analysis needs to be performed on the final stage of the suspension to assess the contribution from the vertical thermal noise.
- Additional work is needed to optimise the mass values of the QUAD main chain and reaction chain. For the purpose of this work the reaction chain is assumed to remain identical to the aLIGO baseline while the main chain has increased in mass. The effect on local damping, d-values, resonant modes and control authority needs to be fully investigated through the aLIGO Mathematica model.
- Fused silica cantilever springs will reduce vertical thermal noise well below the horizontal contribution. In order to achieve this performance gain requires the development of high tensile strength springs, which are suitably robust to handling, and the provision of attachment points to metal/glass interfaces.
- The use of improved BOSEM sensors (e.g. the EUCLID interferometric device) needs to be fully assessed for reducing sensing noise in the QUAD pendulum.
- Methods to characterise and potentially reduce fused silica surface loss and weld loss need to be investigated and further demonstrated.
- A re-design needs to be performed on the QUAD hardware such as interface plates, metal masses, wire jigs, cantilever springs and catcher structures.

Newtonian Noise

- The seismic data is from LLO only.
- The current NN plot is calculated from seismometer data at the ETMX station.
- The 90th percentile is currently shown.
- A subtraction factor of 5 is assumed currently. This estimate comes from the fact that the seismically driven NN level is expected to be around a factor of 5 above the level of the other NN sources, such as the vibrations of the building itself (see figure 5). In order to get more than a factor of 5 subtraction of NN, it would be therefore be necessary to accurately measure the motion of these additional sources. For this reason we assume the cautious estimate that we can just substract the seismically driven NN, resulting in roughly a factor 5 reduction in total NN.

	LIGO-T0900312-v1	LIGO	June 26, 2009
		Reference Seismic Data for LLO	
Used seismic from:		P. Fritschel, S Waldman	

Newer data from LLO

New data from LLO seem to suggest that Strawman red underestimates the GGN level by about a factor 2. Work in progress!

Seismic barrages

- 2D finite-difference time-domain simulations for barrages of 40x40m.
- Attenuation of seismic by about a factor 2.

Coating Brownian noise

• Coating Thermal Noise: We assumed an overall reduction of coating noise by a factor 3.2. Increasing the beam size by a factor 1.6 reduces the coating noise by a factor 1.6. In addition we assumed a further reduction of a factor 2 which can come from improved coatings or the application of Kahlili cavities or the use of waveguide mirrors or the application of alternative beam shapes.

Increasing the beam size

- Assume an increase of beam size by a factor 1.6.
- Keep aspect ratio of test masses as it is => 160kg.

Parameter	Advanced LIGO	Strawman Red Design
ROC of ITM [m]	1934	1849
ROC of ETM [m]	2245	2173
cavity length [m]	3996	3996
spot size at ITM [cm]	5.31	8.46
spot size at ETM [cm]	6.21	9.95
mirror diameter [cm]	34	55
waist position [m]	1835	1835
waist size [cm]	1.20	0.74
g-factor of arm cavity	0.832	0.974

Optical coatings with reduced thermal noise

Continued improvement of tantala coatings.

Loss related to local atomic structure of material

High-temperature annealing of coatings.

Heat treatment in the range of 500-1000 degrees centigrade

Amorphous silicon as a high-index coating material

- > n=3.5 => quarter-wave layer is thinner. In addition need fewer layers.
- Potential improvement = 4.6
- Requires change of laser wavelength

Crysatalline coatings (AlGaAs)

Khalili cavities

Khalili cavities

- Extremely hardware intensive.
- Lots of technical challenges:
 - Thermal lensing
 - Cavity stability
 - Control

Building

Building

Thermal lensing in K-cavity

Khalili cavity

Waveguide mirrors

Quantum noise

Quantum noise: We assumed the same interferometer configuration and optical power as for aLIGO. The quantum noise improvements originate from an increased test mass weight of 160 kg and the injection of frequency dependent squeezed light. We consider an initial squeezing level of 20 dB and losses of 9% plus the roundtrip loss in the filter cavity. The filtercavity has a length of 300 m and a roundtrip loss of 30 ppm.

Laser and Optical Parameters						
Laser Wavelength	1064 nm	1064 nm				
Optical Power at Test Masses	730 kW	730 kW				
Arm Cavity Finesse	450	450				
Signal Recycling	T = 20 %, tuned	T = 20%, tuned				
Squeezing Factor	n.a.	$20\mathrm{dB}$				
Filtercavity (FC) length	n.a.	300 m				
FC Detuning	n.a.	-16.8 Hz				
FC Input Mirror Transmittance	n.a.	$425\mathrm{ppm}$				
Squeezing Losses	n.a.	9% + 30 ppm roundtrip in FC				

Squeezing losses

- Generation of squeezing: 3 %
- $\bullet\,$ Optical isolation: 3 x $0.8\,\%$
- Mode matching to IFO and to OMC: 2 x 1 %
- OMC loss and QE of PD: 2 x $0.5\,\%$
- Mode matching to filter cavity: $1\,\%$
 - = 9% in total

]	Length [m]	Loss per mirror [ppm]	Year
	10	60	1984 [60]
	0.004	1.1	1992 [61]
	0.202	1.5	1996 [62]
	0.202	1.6	1998 [63]
	20	30	1999 [64]

Speedmeter an alternative?

$ \begin{array}{c} \hat{g}_{N}^{(1)} \not\downarrow \hat{g}_{N}^{(2)} \\ \hat{f}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(1)} \\ \hat{f}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(1)} \\ \hat{e}_{N}^{(2)} \not\downarrow \hat{f}_{N}^{(2)} \\ \hat{e}_{N}^{(2)} \not\downarrow \hat{f}_{N}^{(2)} \\ \hat{e}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(1)} \\ \hat{e}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(2)} \\ \hat{e}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(2)} \\ \hat{e}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(1)} \\ \hat{e}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(1)} \\ \hat{e}_{N}^{(1)} \not\downarrow \hat{e}_{N}^{(2)} \\ \hat{e}_{N}^{(2)} \dote_{N}^{(2)} \dote_{N}^{(2)} \\ \hat{e}_{N}^{(2)} \dote_{N}^{(2)} \\ \hat{e}_{N}^{(2)} \dote_{N}^{(2)} \\ \hat{e}_{N}^{(2)} \dote_{N}^{(2)} \dote_{N}^{(2)} \\ \hat{e}_{N}^{(2)} \dote_{N}^{(2)} \\ \hat{e}_$		10^{-20} 10^{-21} 10^{-21} 10^{-22} 10^{-23} 10^{-24} 10^{-24}	10 ¹ Frec	-Quantum noise ALIG -Speedmeter, ITM = 59	0 %, 800kW, No–SR
LASER \overrightarrow{bw} \overrightarrow{cw} \overrightarrow{c}	Parameter	Description	Value (4-km	filter cavity) Value	(100-m filter cavity)
$\begin{array}{c} \mathbf{PRM} \\ PRM$		Mirror mass	40	kg)5 m	40 kg 2005 lm
$\hat{c}_{s} \neq \hat{d}_{s}$		Arms length Lesor wavelength	1.06	no mi A umo	1 064 µm
SRM Input FD-squeezing	P_{o}	Power in arms	2×7	50 kW	$2 \times 750 \text{ kW}$
Faraday isolator	η	quantum efficiency of PD	98	5%	95%
	$\epsilon_{\rm arm}$	round-trip loss in arms	40	ppm	40 ppm
PB5	$\epsilon_{ m FC}$	round-trip loss in FC	40	ppm	40 ppm
	ζ	optimal homodyne angle	6.43 d	legrees	15 degrees
	e^{2r}	squeezing factor	10	dB	10 dB
Homodyne detector	ψ_0	constant squeezing phase shift	6.46 d	legrees	15.5 degrees
i_1	$T_{\rm ITM}$	ITM power transmissivity	0.0	052	0.06
$\int_{\text{phase}} \Psi^{\text{PD2}} i_2 \qquad \qquad i_2 \qquad \qquad$	$S_{\rm RM} = 1 - \rho_{\rm SR}^2$	SRM power transmissivity	0.	.89	0.9 72.7 domoor
shifter	$\psi_{ m SRC}$	EC input mirrot power transmis	ieeivity 0(017	no.n degrees
	Lf Lf	FC length	3.90	95 m	100 m
	$\gamma_f \equiv \frac{cT_f}{cT_f}$	FC half-bandwith	$2\pi \times 4$	9 sec^{-1}	$2\pi \times 540 \text{ sec}^{-1}$
-	$\delta_{f}^{JJ}=4L_{f}\delta_{f}$	FC detuning	$2\pi \times 4$ $2\pi \times 3$	2 sec^{-1}	$2\pi \times 255 \text{sec}^{-1}$

Strawman Red Costs

On the following two pages a dummy-costing for the here presented Strawman-Red design can be found. The principal elements of the design were interpreted in terms of the hardware required to realize them, and then estimates made where ever possible as increments upon the Advanced LIGO parts to base them in reality. Others were based on relatively recent data from Advanced Virgo or the ET design exercise. Please note that the quality of the given numbers varies signicantly as some are based on up-to-date quotes, some are scaled or based on outdated quotes, and some are educated guesses. Therefore, these numbers should only be considered as ballpark, but they are probably good enough for the purpose at hand. For equipment, the total estimated cost, per interferometer, is roughly.....USD.

In the table, for most elements, the following manpower-intensive items are not included:

- Design costs
- Conditioning (cleaning)
- Assembly
- Test
- Installation
- Shakedown
- Contingency (was an average of about 25% for aLIGO)

For aLIGO, the labor costs post-design were about 2/3 the cost for the labor-intensive equipment. Since much of the expense of the Strawman Red design however is not labor intensive (a large portion of the cost is in Suprasil and figuring by others, beam tubes and vacuum chambers, buildings), we might expect about USD for labor (US accounting, bene

fits but no overhead) on top of the about USD for components (shown in Figure 17), thus yielding a total cost of about dollars per interferometer. Contingency would be in addition.

Strawman red Dummy costing v0.4

Γ		Item	Description	Price/item	Number	Total price	source for the	Remarks
				[k\$]	required for one	per single	price	
					interferometer	TFOILS		
		1	Low-loss, large aperture Faraday isolator				Hartmut, From GEO	1x FI for squeezing
							faraday	injection, 2x FI for
	lent	2	Squeezing source				Henning, from GEO	
	n a			-			squeezer	
	lepe	2	polished, various coatings				KIVI/dhs	aligo km
	ະຫ	4	Filter cavity suspensions (same as ALIGO recycling mirror)				DHS	aLIGO mech+elec
	E E	5	Small vacuum tank (1.2m diameter) for filtercavity suspension				DHS	Scaled from BSC
	anba	6	End building for filter cavity (5x5m)				DHS	LIGO Australia estimates
	of fre	7	300 meter of vacuum tube (50cm diameter) for filter cavity,				JW/dhs/MEZ	scaled from LIGO-Aus.
	ç	8	Acoustic enclosure with cleanroom 4my4m (similar to ALIGO laser				TW/dbs	al IGO scaled down a
	i H	Ŭ	or detection room) for the squeezing source and the injection of the				S WYGELS	bit
	ĕ		squeezed light into the filtercavity.					
	5	9	CDS for squeezing control (about 50 channels)	1			đhs	guess from aLIGO ISC
			Total cost of					
		10	3x Geophone based seismometer				Jan	30x 3-axis seismometers
	z							per main testmass
	ö	11	power. ADC + recording of 30 slow (f<50Hz) channels				đhs	guess
			Total cost of N					0
\vdash		12	Suprasil 312 rectangular fused silica penultimate mass (54cm long				dhs	scaled from costs for line
		12	26cm wide, 26 cm thick, 1/10 polished side faces)				GH 3	21, per GLB
		13	EUCLID interferometers				Stefan, from recetly	
							bought Euclid	
	ĕ	14	Redesign/Fabrication of QUAD main chain/reaction chain structure	1			DHS - new	Scaled from ALUK plus
	ē		to accommodate 1.2m long suspension				fabrication	LIGO elect.
	6d	15	Redesign/Fabrication of ISI metal cantilever springs and flexures to				FM	aLIGO
	5		support higher QUAD load	4				
	10	16	Redesign/Fabrication of new intermediate and upper intermediate				DIG	
	Sus	17	metal masses	•			DHS	
	g	17	total loads of 25kg/spring (stage 0). 72kg/spring (stage 1) and					
	Su		60kg/spring (stage 2)				DHS	
			oversoning (suge 2).				5155	

	18	Design/Fabrication of pillars to lift ISI/QUAD by approximately		
		30"	DHS	guess
	19	Extension of the pulling machine ballscrew unit to 1.5m	DHS	guess
		Total cos		
	20	Input test masses, 160kg Suprasil 3002 (cylindrical: 54cm diameter,		
		depth 32.4cm, λ/10 polished flats of size 32.4cmx 16.2cm.)	Harald from 200kg	5
			ET quote: 3.0k€ /k	g
9	21	End test masses, 160kg Suprasil 312 (cylindrical: 54cm diameter,	1.58k€/kg based o	1
		depth 32.4cm, λ /10 polished flats of size 32.4cmx 16.2cm.)	Adv. Virgo estima	e
6	22	Polishing of a main mirror	Harald	
S	23	Coating runs for main test masses (2xHR, 1xAR)	Harald	
e e	24		Harald from 200kg	5
ē		Beam splitter, 21kg, 55cm diamter, 6cm dept, Suprasil 3001	ET quote: 3.5k€ /k	g
=. 0	25	Modified beam splitter suspension	DHS	aLIGO
iz.	26	Modified recycling cavity telescope mirrors and suspensions		Half of the aLIGO IO
Ĕ		(PR+SR) to allow 1.6 times larger beam size in the arm cavities.	DHS	optics plus susp.
Bea		Total cost of in		
	27	Additional end station (10x10m) with crane	Harald: 5k\$/m^2	
	28	50 m beam tube + enclosure + road etc	Harald: 10k\$/m^2	
l l	29			LIGO Australia
		BSC Vacuum vessel	JW/dhs	estimates
[30			LIGO Australia
		gate valve (tube diameter)	JW/dhs	estimates
ſ	31			LIGO Australia
		Vacuum pumps and control for additional chamber	JW	estimates
	32	Active seismic isolation system for main mirror	DHS, Scaling	aLIGO
[33	Full Quad-suspension for EETM of 160 kg	DHS	aLIGO/ALUK
	34	IETM, 160kg Suprasil 3002 (cylindrical: 54cm diameter, depth		
ies		32.4cm, λ/10 polished flats of size 32.4cmx 16.2cm.)	same as 20	
vit	35	Polishing of IETM	same as 22	
g	36	Coating runs for main test masses (1xHR, 1xAR)	same as 23	
:=	37	Control systems for 2 additional LSC and ASC degrees of freedom	DHS - scaling	aLIGO
la		Το		
Ż		10		
				aLIGO: COC + IO +
		Change the wavelength to 1550nm (or similar), i.e. Replace all		Laser = \$28.2M. Need a
Opt 1	38	optical components and coatings, buy new 200W lasers etc.	dhs	bit more. So \$10M/IFO

Total estimated cost of components Strawman Red for a single interferometer [k\$]

Overview

Strawman Red Design Overview				
Subsystem and Parameters	Advanced LIGO Baseline Design	Strawman Red Design		
Sensitivity				
Binary Neutron Star Inspiral Range	200 Mpc	614 Mpc		
Anticipated Strain Sensitivity	$3.5 \cdot 10^{-24} / \sqrt{\text{Hz}} \otimes 300 \text{Hz}$	$1.2 \cdot 10^{-24} / \sqrt{\text{Hz}} \otimes 250 \text{ Hz}$		
Instrument Topology				
Interferometer	Dual-recycled Michelson	Dual-recycled Michelson		
	with Armcavities	with Armcavities		
Quantum Noise Reduction	n.a	Frequency-dependent		
		input squeezing		
Laser and Optical Parameter	rs			
Laser Wavelength	1064 nm	1064 nm		
Optical Power at Test Masses	730 kW	730 kW		
Arm Cavity Finesse	450	450		
Signal Recycling	T = 20%, tuned	T = 20 %, tuned		
Squeezing Factor	п.а.	20 dB		
Filtercavity (FC) length	п.а.	300 m		
FC Detuning	п.а.	-16.8 Hz		
FC Input Mirror Transmittance	11.8.	425 ppm		
Squeezing Losses	II.8.	9% + 30 ppm roundtrip in FC		
Test Masses and Suspension	s			
Mirror Material	Fused Silica	Fused Silica		
Main Test Mass Diameter	35 cm	55 cm		
Main Test Mass Weight	42 kg	160 kg		
Masses in Main Ouad (from top)	22 kg/22 kg/40 kg/40 kg	44 kg/66 kg/120 kg/160 kg		
Masses in Reaction Chain (from top)	22 kg/22 kg/40 kg/40 kg	22 kg/22 kg/40 kg/40 kg		
Total Mass of a Main Suspension	250 kg	520 kg		
Length of Final Suspension Stage	0.6 m	1.2m		
Fused Silica Fibre Diameter	400 µm	566µm		
Fibre Diameter at Bending Point	800 µm	1624µm		
Coating Noise Reduction		,		
Improvement Factors	na	factor 1.6 from increased beam		
improvenieno i devoro		size PLUS factor 2 from either		
		(i) better coatings OR (ii) Khali		
		cavities OR (iii) waveguides		
Operation Temperature	290 K	290K		
IM/EM ROC	1934/2245 m	1849/2173 m		
IM/EM spotsize	5.31/6.21 cm	8.46/9.95 cm		
Khalili cavity length	п.а.	50 m		
and an and a second sec				
Gravity Gradient Noise	000	LLO PTMP AND		
Assumed Seismic Level	717	LLO ETMX, 90th percentile		
Assumed subtraction factor	п.а.	5		

⇒ For details please see document on the DCC:

https://dcc.ligo.org/cgi-bin/private/DocDB/ ShowDocument?docid=78100