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Figure 2. LEFT: Noise budget of Advanced LIGO. This plot was produced using
the GWINC [24] and represents the Advanced LIGO broadband configuration
described in [23]. RIGHT: Illustrative examples of potential sensitivity limits
for Advanced LIGO upgrades. The upper boundary of the orange area is given
by seismic, gravity gradient and residual gas noise equal to the Advanced LIGO
baseline design and coating and suspension thermal noise being improved by a
factor 2 each. In contrast the lower boundary is calculated assuming a coating
noise improvement of a factor 4, a suspension thermal noise reduction of a factor
5, a gravity gradient subtraction of a factor 10 and a seismic noise level reduced
by a factor 100. Please note that quantum noise is not included in the orange
region.
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What is quantum noise?

2 Quantum noise is comprised of photon shot noise at high frequencies
and photon radiation pressure noise at low frequencies.

2 The photons in a laser beam are not equally distributed, but follow a
Poisson statistic.
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z The Standard Quantum Limit (SQL)

VIA VERITAS VITA

. . . i " SQL for a simple Michelson {length = 10 km, mirror mass = 10 kg)
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» The SQL is the minimal sum of shot noise and radiation pressure noise.

» Using a classical qguantum measurement the SQL represents the lowest achievable
noise. V.B. Braginsky and F.Y. Khalili: Rev. Mod. Phys. 68 (1996)
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< Very light mirror (MX) is coupled
to the movement of EM1 and
EM2 via optical springs.

< MX can then locally read out by a
small local meter without
disturbing the quantum states in
the main instrument (QND
measurement).

< Split between GW transducer and

readout allows separate
optimisation of these two

systems.

Optical Bar configurations

Laser

| EM1

EM2

ocal readout
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Optical Bars and Optical Levers

Laser

| EM1

Optical Bar

EM2

Nonli-

EM1

Optical Lever

near meter for the gravitational wave
antenna”,Phys. Lett. A 218 (1996).

V.B. Braginsky and F.Y. Khalili:

“The ‘ptical lever’ intracavity

readout scheme for gravitational-wave
antennae”,Phys. Lett. A 298 (2002).

F.Y. Khalili:

< Optical lever: introducing arm cavities increases the movement of

MX by the Finesse of the arm cavity.
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Local Readout for Advanced LIGO

< While optical Bars and levers
require a complete redesign of the
interferometers, so-called ‘local
readout’ is compatible within
advanced LIGO infrastructure

< Atlow frequencies ITM and ETM
are rigidly connected.

< Atlow frequencies GW signal is not
in differential arm length, but in ITM
movement (local frame).

< Use a separate laser system to read
out the position of the ITM.

laser 1
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laser 2

Rehbein et al: PRD 76, 062002 (2007)
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Local Readout for Advanced LIGO (2)
How does local readout for Advanced — 1" carrir utput |
LIGO work? 2" carrier output
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> At low frequencies: the arm
cavity mirrors are ‘rigidly’
connected by optical springs =>
GW does not change the distance
between ITM and ETM. However,

GW signal is imprinted on ITM 1
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which and can be read out by

additional green laser. -
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< At high frequencies: no opticallm
spring present => ITM and ETM i
can move independenﬂy. Rehbein et al: PRD 76, 062002 (2007)

Slide 8 SUPA GWD, Nov 2010



UNIVERSITY

Local Readout for Advanced LIGO (3)

< Technique allows to increase
low frequency sensitivity.

< In a second step the Signal-
Recycling can then be re-
tuned to slightly higher
frequency.

< Win at low and high
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Michelson Interferometer:
Position meter

\ © Photo diode /

Speedmeter vs Positionmeter

)

Sagnac Interferometer:
Speed meter
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Speed meter 2
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< Speedmeter can in principles cancel radiation pressure noise to a
large extend and surpass the SQL over a wide frequency range
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Speedmeter really better than MI ?
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