Large Interferometers for small displacements:

A technological view of Gravitational Wave detection

Stefan Hild, University of Glasgow OFS-20, Edinburgh, October 2009

Outline

Overview of Gravitational Wave detection

Optical technology for high precision interferometry

- Simple Michelson interferometer
- Power Recycling
- Arm cavities
- Signal Recycling
- Standard Quantum limit
- Examples of new technologies for future Gravitational wave detectors

High power laser, Laguerre Gauss modes, Quantum-non-demolition

The most violent events in Universe are in our reach !

Soon we will be able to listen to Supernovae, colliding black wholes and even the aftermath of the Big Bang using Gravitational waves.

Gravitational Waves: Ripples in space time

- GW are consequence of General Relativity.
- GW are caused by asymmetric accelerated masses.
- GW change the metric of space time.
- Quadrupole waves.

of

GLASGOW

Gravitational Research

Institute for

We know that GW exist: Indirect detection by Taylor and Hulse (1993 Nobel Price).

No direct detection so far.

On going search with kilometerlong Michelson interfero-meters looking for tiny length changes.

Institute for Gravitational Research

Why haven't we measured GW so far?

- Space time is extremely stiff !
- Length changes caused by GW are really tiny (<10⁻²¹) !

How can we detect gravitational waves?

A Michelson interferometer is the ideal instrument to measure relative length changes.

of

GLASGOW

Institute for

Gravitational Research

Institute for Gravitational Research

We have come a long way ...

- The first Michelson interferometer: Experiment performed by Albert Michelson in Potsdam 1881.
- Measurement accuracy 0.02 fringe

- Michelson and Morley 1887 in Cleveland.
- ART. XXXVI.—On the Relative Motion of the Earth and the Luminiferous Ether; by ALBERT A. MICHELSON and EDWARD W. MORLEY.*

State-of-the-art Michelson Interferometer

rgh, October 2009

Institute for

Gravitational Research

GLASGOW

State-of-the-art Michelson Interferometer

rgh, October 2009

Institute for

Gravitational Research

Institute for Gravitational Research

State-of-the-art Michelson Interferometer

Institute for Gravitational Research

State-of-the-art Michelson Interferometer

Institute for (Gravitational Research

State-of-the-art Michelson Interferometer

GLASGOW

Today's network of GW detectors

S. Hild for the LSC: "The Status of GEO600", Class. Quantum Gravity 23 (2006)

OFS20, Edinburgh, October 2009

Status and future of GW observatories

- **1st** generation successfully completed:
 - \succ Long duration observations (~1yr) in coincidence mode of 5 oberservatories.
 - Spin-down upper limit of the Crab-Pulsar beaten!
- **2nd** generation on the way:

of

GLASGOW

- End of design phase, construction about to start (or even started)
- 10 times better sensitivity than 1st generation. => Scanning 1000 times larger volume of the Universe
- **3rd** generation at the horizon:
 - FP7 funded design study
 - 100 times better sensitivity than 1st generation. => Scanning 1000000 times larger volume of the Universe

1G = GEO600 / LIGO / Virgo2G = Advanced LIGO, GEO-HF, A-Virgo 3G = Einstein Telescope

Institute for

Gravitational Research

Outline

Overview of Gravitational Wave detection

Optical technology for high precision interferometry

- Simple Michelson interferometer
- Power Recycling
- Arm cavities
- Signal Recycling
- Standard Quantum limit

Examples of new technologies for future Gravitational wave detectors

High power laser, Laguerre Gauss modes, Quantum-non-demolition

Interferometry: A simple Michelson

- How does a simple Michelson interferometer work?
- Aim: Measure lengths difference of the two perpendicular arms.
- Light from laser:

of

GLASGOW

- is split by beamsplitter,
- \succ travels along the arms,
- bounces of the end mirrors
- travels back beamsplitter
- Measurement is done by comparing the phase of the two returning beams.

Institute for

Gravitational Research

Interferometry: A simple Michelson

- Differential arm lengths changes can be described by the creation of phase modulation sidebands.
- Operation point = Dark fringe

of

GLASGOW

- Carrier light leaves the IFO towards the laser
- Signal sidebands leaves towards the photodiode
- Many technical noises (frequency noise, laser amplitude noise) suppressed by common mode rejection.
- Null-measurement !!

Institute for

Gravitational Research

Interferometry: A simple Michelson

- Who can we improve our sensitivity to gravitational waves?
- GW signal scales with storage time of the light in the arms:
 - Increasing arm length

of

GLASGOW

- Make use of recycling techniques
- Major noise source limiting our sensitivity is shot noise.
 - Shot noise prop. sqrt(power)
 - GW signal scales linear with power

Our Goal:

- Increase storage time in the arms
- Increase circulating light power

Institute for

Gravitational Research

GLASGOW

Interferometry: Power Recycling

- If operated on the dark fringe the Michelson looks from the laser like a mirror.
- Instead of `wasting' light we insert a semi-transparent powerrecycling mirror (PRM) to send the light back to the interferometer.
- In GEO600 a power recycling factor of 1000 is realised.

Institute for

Gravitational Research

Institute for Gravitational Research

Quantum noise components

- Quantum noise is comprised of photon shot noise at high frequencies and photon radiation pressure noise at low frequencies.
- The photons in a laser beam are not equally distributed, but follow a Poisson statistic.

GLASGOW

The Standard Quantum Limit (SQL)

Institute for

Gravitational Research

- The SQL is the minimal sum of shot noise and radiation pressure noise.
- Using a classical quantum measurement the SQL represents the lowest achievable noise. V.B. Braginsky and F.Y. Khalili: Rev. Mod. Phys. 68 (1996)

Institute for **Gravitational Research**

Interferometry: Arm cavities

- Increasing the storage time in the arms by using arm cavities.
- Finesse of the arm cavities determines bandwidth of GW detector.

Gravitational Research

UNIVERSITY

of

GLASGOW

Interferometry: Signal Recycling

- Inserting a semi-transparent signal recycling mirror (SRM) at the output of the Michelson.
 - Increasing the signal storage time
- Signal Recycling allows to shape Quantum noise via two knobs:
 - Bandwidth
 - Frequency of maximal sensitivity
- Very handy for adjusting the detector sensitivity to astrophysical targets of interest.

Institute for

Institute for Gravitational Research

Signal-Recycling (de)tuning

Modifying the Signal recycling detuning frequency by changing the position of the signal recycling mirror by a few nanometers.

GLASGOW

Signal-Recycling mirror transmittance

Institute for

Gravitational Research

Modifying the Signal recycling bandwidth by changing the reflectance of the signal recycling mirror by a few nanometers.

Institute for Gravitational Research

Fundamental noise limits for future GW detectors

- Future GW detectors (such as Advanced LIGO or Advanced Virgo) will be limited by quantum noise at nearly all frequencies of interest.
- The second major noise source is Brownian noise of the dielectric coating layers.
- Other noises that need to be treated with care:
 - Gravity gradient noise
 - Seismic noise
 - Suspension thermal noise

S. Hild et al: "Sensitivities curves for the Advanced Virgo Preliminary Design", Virgo note VIR-101A-08, available at https://pub3.ego-gw.it/codifier/index.php

Outline

- Overview of Gravitational Wave detection
- Optical technology for high precision interferometry
 - Simple Michelson interferometer
 - Power Recycling
 - Arm cavities
 - Signal Recycling
 - Standard Quantum limit

Examples of new technologies for future Gravitational wave detectors

High power laser, Laguerre Gauss modes, Quantum-non-demolition

Institute for Gravitational Research

Laguerre Gauss modes to reduce thermal noise

Mirror thermal noise can be reduced by a factor of a few by using higher order LG modes instead of TEM₀₀

of

- By distribution the power more homogeneously over the mirror surface one can average better over the local thermal fluctuations
- We showed that interferometry (creation of errorsignal, misalignment effects etc) are similar for TEM_{00} and LG_{33} .

Chelkowski, Hild, Freise: PRD 79, 122002

Institute for Gravitational Research

Injection of Squeezed Light

- Injection of squeezed light will reduce photon shot noise / quantum noise.
- Squeezed light sources available now:
 - 10dB squeezing
 - Frequencies as low as 10Hz
- Implementation of squeezing in GEO600 happing right now.
- First time demonstration in a big interferometer.

GLASGOW

Qunatum-Non-Demolithion Techniques

Institute for

Gravitational Research

- Very light mirror (MX) is coupled to the movement of EM1 and EM2 via optical springs.
- MX can then locally read out by a small local meter without disturbing the quantum states in the main instrument (QND measurement).
- Optical lever: introducing arm cavities increases the movement of MX by the Finesse of the arm cavity.

- Start around 2020(?)
- Underground location
- ~30km integrated tunnel length (?)
- Triangular shape
- Myriads of new possibilities and challenges !!
- Plenty of new Science...

NIKHEF, '08

NICHEF Kees Huyser TUNNEL Ø~5 m Length -

Institute for Gravitational Research

Xylophone: More than one detector to cover the full bandwidth

Parameter	ET-HF	ET-LF
Arm length	$10\mathrm{km}$	10 km
Mirror material	Fused Silica	Silicon
Mirror diameter / thickness	$62 \mathrm{cm} / 30 \mathrm{cm}$	62 cm / 30 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	$1550\mathrm{nm}$
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10 %	20 %
Quantum noise suppression	$10 \mathrm{dB}$	$10\mathrm{dB}$
Beam radius	$12\mathrm{cm}$	$12\mathrm{cm}$
Beam shape	LG_{33}	TEM_{00}
Temperature	290 K	10 K
Suspension	Superattenuator	$5 \times 10 \mathrm{m}$
Seismic (for $f > 1 \text{ Hz}$)	$1 \cdot 10^{-7} \mathrm{m}/f^2$	$5 \cdot 10^{-9} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor 50

Low Frequency IFO: low optical power, cryogenic test masses, sophisticated low frequency suspension, underground, heavy silicon test masses, laser at 1550nm. High Frquency IFO: high optical power, room temperature, surface location, squeezed light

Summary

- Hunting gravitational waves requires plenty innovative optical technology.
- Pushing optics and interferometry towards their limits (and sometimes even beyond!) we set up an international network of extremely sensitive, km-long Michelson interferometers.
- There is an exciting future waiting for us. Many new optical technologies need to be developed, adapted, prototyped and implemented.

Thanks very much for your attention!

Institute for Gravitational Research

VIA VERITAS VITA

Gravitational waves: A new way of exploring the Universe

- Nearly all of our current knowledge of the cosmos is based on observation of electromagnetic radiation (visible light, radio astronomy, infrared, ...).
- Gravitational astronomy can provide completely new insight to the universe:
 - Multimessenger observations: We can learn more about things we already see in the electromagnetic spectrum by also seeing their GW emission (for instance supernovae).
 - Exclusive GW observations: There are objects that can only be seen by their GW emission

Optical Springs & Optical Rigidity

Detuned cavities can be used to create optical springs.

of

- Optical springs couple the mirrors of a cavity with a spring constant equivalent to the stiffness of diamond.
- In a full Michelson interferometer detuned Signal Recycling causes an optical spring resonance.

Institute for

Gravitational Research

High power lasers at 1064nm

Advanced Ligo will feature a 200W laser.

of

- Low power: NPRO
- Medium power: amplifier
- > High power: Slave laser
- Prestabilized in in frequency and power
- Achieved RIN of about 3e-9.

Institute for

Gravitational Research