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University Today's network of GW detectors
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These machmes operate on a extremely high sensitivity !!!

Example GEOGOO: measures the 600m long arms to an accuracy of
+ 0.0001 proton diameter @ 500 Hz.
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}j?;ﬁirg%% Status of current and future GW detectors

1st generation successfully completed:

» Long duration observations (~1yr) in 1G = GEO600 / LIGO / Virgo
coincidence mode of 5 observatories. 2G = Advanced LIGO, GEO-HF, A-Virgo
» Spin-down upper limit of the Crab-Pulsar  3© = Einstein Telescope
beaten! = :
2nd generation on the way: \\ EHIN
\| —3rq Generation 24~
» End of design phase, construction 02\ _‘ T
started 3 3 %
> 10 times better sensitivity than 1st %10_23 \ A
generation. => Scanning 1000 times < 3 : =
larger volume of the Universe &
3rd generation at the horizon: !
» FP7 funded design study i
107
> 100 times better sensitivity than 1st ! T bequencyt o

generation. => Scanning 1000000 times
larger volume of the Universe
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gf%ﬁigg% Simple Concept of a GW detector

Need to measure extremely accurate the distance
between test masses!

We have to make sure:

1. That the test masses are quite enough (seismic
isolation, thermal noise, gravity gradients)

2. That we can read out the test mass position to
the required level without introducing noise.

L. =L, L,>L, L =L, L, <L, L, =L,
destructive Light @ output destructive Light @ output destructive
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gf&iﬁirg%g What is required to go from 24 to 3r Generation ?

ET dummy curve, file=ET_sthild_1.m
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‘ Improve test mass quietness, i.e. reduce thermal noise

‘ Improve readout, i.e reduce quantum / back-action noise
NAM 2010 Stefan Hild 4



of Glasgow

Part 1 of this talk:

New Technologies
to make the test masses quieter
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qulasgon’ How to reduce thermal noise

Thermal noise proportional to Temperature and mechanical loss of the
test masses.

Improvements possible by:
reduction of temperature -4 reduce mechanical loss materials
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Fused silica — as the material currently in use — is not suited for
cryogenic operation due to its large loss peak.
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i g}gﬁifg%g Silicon as a 3rd generation material

« Silicon has several advantages as a test mass material for
a 3rd generation detector

« low mechanical loss
 low coefficient of thermal expansion

« excellent thermal conductivity

/% "
(avoiding of thermal gradients)

« available in large pieces due to the
demands of the semiconductor

industry
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M Universit - -
B o7 Glasgow Optical coatings

There is not only thermal noise from the test mass substrates , but also
from the mirror coatings (amorphous dielectric materials). This noise
scales again with temperature and loss, but also with the number of the
layers.
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Idea: replacing the dielectric (lossy) multilayer stack by a mono-
crystalline silicon micro structure
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M Universit
o Glasgow Novel Approaches

resonant waveguide monolithic waveguide

Incident light

l Constructive interference

estructive interference

[Briickner et al., Optics Express 17 (2009) 163 - 169] [Brickner et al., Optics Letters 33 (2008) 264 - 266]

thickness of tantala by one order no lossy dielectric materials needed,

of magnitude smaller than in no interfaces, excellent thermal
dielectric stacks properties

reduced thermal noise reduced thermal noise
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WL gj{féﬁirg%% Reflective coatings based on micro structures

[ |

It is possible to fabricate such a reflector purely from silicon without
any additional materials.

Thermal noise potential of a T-shape
micro structured mirror
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gf&iﬁirg%g What is required to go from 24 to 3r Generation ?

ET dummy curve, file=ET_sthild_1.m
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‘ Improve test mass quietness, i.e. reduce thermal noise

‘ Improve readout, i.e reduce quantum / back-action noise
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Part 2 of this talk:

New Technologies
to reduce readout noise
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ofGlasgovz Quantum noise components

[ |

Quantum noise is comprised of photon shot noise at high
frequencies and photon radiation pressure noise at low
frequencies.

The photons in a laser beam are not equally distributed,
but follow a Poisson statistic.

V# X —
A el VA at |
time time

>
Suspended |
ELaser D % mirror[ N

Photodiode
x

photon shot noise photon radiation pressure noise
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i University The Standard Quantum Limit (SQL)

of Glasgow

While shot noise

Contrl bUtlon decreases 18 SQL for a simple Michelson {length = 10 km, mirror mass = 10 kg)
- L 10 T I
with optical power, — = shot noise, P = 10000 W
radiation pressure level o N0 radiation pressure, P = 10000 W
. . 10+ === quantum noise, P = 10000 W
Increases. onath - == shot noise, P = 1000000 W i
waveleng T 10_21 """" radiation pressure, P = 1000000 W ||
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1 | hcA 2 - SQL
h = — = .
an(f) L. 27 P«}optical £10” py :
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1)) 'l," i
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b () \n 1 [ #P
= -24 y
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< The SQL is equivalent to the Heisenberg uncertanty.

< Using a classical quantum measurement the SQL represents the
lowest achievable noise. V.B. Braginsky and F.Y. Khalili: Rev. Mod. Phys. 68 (1996)

NAM 2010 Stefan Hild 14



E}%ﬁigé% Injection of Squeezed Light

Quadrature picture of Heisenberg Coherent Squeezed
uncertainty: state state I
horizontal = amplitude quadature

vertical = phase quadrature

Injection of squeezed light will
reduce photon shot noise /
quantum noise.

Chelkowski et al:
PRA 71, 013806

Squeezed light sources available ;

now: 10dB squeezing +
frequencies as low as 10Hz ekYAG recycing «5om

LASER .
mirror

Implementation of squeezing in |
GEO600 happing right now. wacuum olse

Filter cavity NY

Signal-recycling
mirror

i Squeezed vacuum noise + signal

First time demonstration in a big
interferometer.
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el Qunatum-Non-Demolithion Techniques

o EM1 Optical Bar

“Nonli-

near meter for the gravitational wave
antenna”,Phys. Lett. A 218 (1996).

Laser EM2

MX
E s 1

y .9

V.B. Braginsky and F.Y. Khalili:

« Optical rigidity can be used to surpass the Standard Quantum Limit.
Optical springs allow to rigidly connect two mirrors with a spring
made of photons, which is stiffer than diamond.

* Very light mirror (MX) is coupled to the movement of EM1 and EM2 via
optical springs. MX moves in its local frame!

« MX can then locally read out by a small local meter without disturbing

the quantum states in the main instrument (QND measurement).
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Future Gravitational Wave Observatories require many
new technologies !

Development and prototyping of many innovative
techniques is underway.

Two examples to make the test mass queiter:
 Cryogenic silicon

« Waveguide coatings

Two examples to reduce the readout noise:

« Squeezed light

« Optical Rigidity / Qunatum non Demolition

Many other interesting techniques around which | did not

have the time to cover ... (Speedmeter, frequency dependent
variational readout, higher order Laguerre Gauss modes, xylophone
detectors ...)
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/D ey Optical Springs & Optical Rigidity

Detuned cavities can be

used to create optical — ——
springs.
Detuned
Laser suspended
Optical springs couple the cavity
mirrors of a cavity with a E_”__H
spring constant equivalent 4;»
to the stiffness of diamond. stable =
powerA optical spring
In a full Michelson
interferometer detuned 7_ 7_ X
Signal Recycling causes >
an optical spring
resonance.

NAM 2010 Stefan Hild 19



