

VESF School 2009: FUTURE INTERFEROMETERS

Stefan Hild

University of Birmingham

Pisa, May 2009

Some remarks ahead ...

- Future interferometers' is a very wide field and I apologise for only covering a small fraction of the most interesting topics.
- In order to reserve as much space as possible for the 'cool future stuff', I will build on the basics covered in previous lectures ('Interferometers', 'Noise and Control', 'Current detectors').
- If we come along anything you do not understand, PLEASE ASK !!!

((O)) EGO

What do I want you to take with you from this lecture?

- Get a good overview of all the exciting physics and technologies necessary for designing and building future interferometers.
- Get an intuitive understanding of the relevant technologies and underlying principles.

LIGO

LIGO

Today's network of GW detectors

IIOIII VIR

Today:
Virgo, LIGO, GEO600 and Tama
Sensitivity: 10⁻¹³ of a fringe
GEO600: measures the 600m long arms to an accuracy of 0.0001 proton diameter @ 500 Hz S. Hild for the LSC: "The Status of GEO600", Class. Quantum Gravity 23 (2006)

((O)) EGO

III EGO

Status and future of GW observatories

- 1st generation successfully completed:
 - Long duration observations (~1yr) in coincidence mode of 5 oberservatories.
 - Spin-down upper limit of the Crab-Pulsar beaten!
- 2nd generation on the way:
 - End of design phase, construction about to start (or even started)
 - 10 times better sensitivity than 1st generation. => Scanning 1000 times larger volume of the Universe
- 3rd generation at the horizon:
 - FP7 funded design study
 - 100 times better sensitivity than 1st generation. => Scanning 1000000 times larger volume of the Universe

((O)) EGO

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories
 - Advanced LIGO, LGCT, GEO-HF

What will a 3rd Generation Interferometer look like ?

- How to build the Einstein Telescope (ET)?
 - Geometry and shape
 - How to reach the sensitivity?

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories
 - ➡ Advanced LIGO, LGCT, GEO-HF

Main drivers for the design of future interferometers.

What will a 3rd Generation Interferometer look like ?

- How to build the Einstein Telescope (ET)?
 - Geometry and shape
 - How to reach the sensitivity?

III EGO

Which are the main fundamental noise sources limiting Virgo ?

http://wwwcascina.virgo.infn.it/senscurve/

III EGO

Which are the main fundamental noise sources limiting Virgo ?

 Suspension thermal noise (low frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

III EGO

Which are the main fundamental noise sources limiting Virgo ?

- Suspension thermal noise (low frequencies)
- Mirror thermal noise (mid frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

III EGO

Which are the main fundamental noise sources limiting Virgo ?

- Suspension thermal noise (low frequencies)
- Mirror thermal noise (mid frequencies)
- Shot noise (high frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

III EGO

Which are the main fundamental noise sources limiting Virgo ?

- Suspension thermal noise (low frequencies)
- Mirror thermal noise (mid frequencies)
- Shot noise (high frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

((O)) EGO

How to reduce Suspension Thermal Noise?

Suspension thermal noise of a simple pendulum:

((O)) EGO

How to reduce Suspension Thermal Noise?

Suspension thermal noise of a simple pendulum:

- Suspension thermal noise can be reduced:
 - By cooling: proportional to sqrt(T)
 - Sy making the pendulum longer: proportional to w_0
 - Sy making the mirror heavier: proportional to sqrt(1/m)
 - Sy reducing the pendulum losses: proportional to sqrt(phi)

((O)) EGO

How to improve the loss angle of a suspension?

- Example: Displacement noise of a single pendulum:
 - Mass = 42kg
 - Room temperature
 - 1 Hz resonance frequency
- How can we improve the loss angle?

III EGO

Steel Wire Suspensions

- Steel wire suspensions: loss angle of up to 1e-6
- Fairly easy to build and to handle ...

III EGO

Quasi-monolithic Fused Silica Suspension

- Using thin (few hundred microns) fused silica fibers welded or clamped onto fused silica mirrors.
- Breaking stress limit of fused silica fibers (2-4e9 Pa) comparable with steel wires.
- Quasi-monolithic fused silica suspensions: loss angle of up to 1e-8
- Fused Silica Suspensions are used in GEO600 for more than 5 years and will be the baseline for all 2nd generation interferometers.

III EGO

Which are the main fundamental noise sources limiting Virgo ?

- Suspension thermal noise (low frequencies)
- Mirror thermal noise (mid frequencies)
- Shot noise (high frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

III EGO

How to decrease Coating Brownian Noise ?

- Coating Brownian noise can be reduced:
 - By cooling: proportional to sqrt(T)
 - Sy making the coating layers thinner: proportional to sqrt(d)
 - By making laser beam larger: proportional to 1/r_0
 - Sy reducing mechanical losses of the coating: proportional to sqrt(phi)

Can we make the coating thinner?

- NO! For a certain laser wavelength and coating materials the coating thickness is driven by the required reflectivities (R) of the mirrors.
- Coating made of k quarter-wave stacks, formed by alternating layers of high refraction index (nH) and low refraction index (nL)

PLEASE NOTE: If we would use different lasers the coating layer thickness would go down inverse proportional to the laser wavelength

ARDUA ALTA

Required coating thicknesses for the Advanced Virgo mirrors

III EGO

Can we use better coatings?

- Fortunately: YES!
- Coating research is one of the hot topics in the GW field.
- Standard highrefractive material is tantala.
- Doping the tantala with titania reduces the loss angle by about 30%.

G. Harry et al: 'Titania-doped tantala/silica coatings for GW detection' CQG, 2007, 24, 405-415

((O)) EGO

Where to put the cavity waist ?

- Initial Virgo has the waist on the input mirror:
 - Disadvantage: Coating noise is entirely dominated by small beam size of input mirror

III EGO

Gauss beams

Where to put the cavity waist ?

- Initial Virgo has the waist on the input mirror:
 - Disadvantage: Coating noise is entirely dominated by small beam size of input mirror
- Advanced Virgo will have the waist close to cavity center:
 - Disadvantage: large beams in the central IFO
 - Advantage: much lower coating Brownian noise!

((O)) EGO

What is the maximum Beam Size ?

- Sensitivity
 - Need to make the beams as large as possible!
- Cavity stability
 - Large beams means pushing towards instability of the cavity.
 - Cavity degeneracy sets limit for maximal beam size
- Mirror size
 - The maximum coated area might also impose a limit for the beam size.

III EGO

Clipping losses

- Why are clipping losses a problem?
 - Reduced power buildup.
 - Scattered light noise.
- In the ideal case a factor 2.5 (beam radius to mirror radius) seems to be fine = clipping loss of only a few ppm.
- Keep in mind: in reality
 - Mirror imperfections
 - Miscentering
 - Residual alignment fluctuations

Advanced Virgo: Mirror diameter 35cm Maximal beam radius = 6.5cm

UNIVERSITYOF BIRMINGHAM Sensitivity with symmetric radii of

curvature (ROC)

With 6cm radius and 1530m **ROC:** Advanced Virgo obtains about 150 Mpc.

> Example: cavity of 3km length and identical curvatures of input and end mirror.

((O)) EGO

III EGO

Cavity Stability and Choice of ROCs

- The larger the beams the more accuracy is required for the mirror polishing !
- Account for potential manufacturing accuracy
 - AdVirgo example: L = 3000m, beam radius at ITM and ETM = 6cm => ROCs of 1531m are required.
 - Deviation of only a few ten meters can make cavity instable.
- Advanced Virgo: Believe that we can go for ROCs 2% of instability.
- Corrective coating as baseline.

Example: cavity of 3km length and identical curvatures of input and end mirror.

Corrective Coating

- A way to improve the mirrors flatness: corrective coating
- Two ingredientsRobot
 - Metrology

Slide stolen from R.Flaminio

((O)) EGO

Corrective coating from LMA

Before correction (Ø120 mm) 3.3 nm R.M.S. 16 nm P.V.

After correction (\emptyset 120 mm) 0.98 nm R.M.S. 10 nm P.V.

Symmetric ROCs of IM and EM ?

Coating noise for ITM and ETM are different, due to their different number of coating layer:

$$Coating thickness$$
 $S_x(f) = rac{4k_{
m B}T}{\pi^2 fY} rac{d}{r_0^2} \left(rac{Y'}{Y} \phi_{\parallel} + rac{Y}{Y'} \phi_{\perp}
ight)$

For equal beam size ETM has higher noise.

((Q)) EGO

((O))) EGO

Optimal Waist Position

- In order to minimize the thermal noise we have to make the beam larger on ETM and smaller on ITM.
- Equivalent to moving the waist closer to ITM.
- Nice additional effect: the beam in the central area would be slightly smaller.

Cavity Stability and Choice of ROCs

- Definition of mode-nondegeneracy:
 - Gouy-phase shift of mode of order l+m:

$$\phi_{l+m} = (l+m)\frac{1}{\pi}\arccos\sqrt{(1-\frac{L}{R_{c,i}})(1-\frac{L}{R_{c,e}})}.$$

Mode-non-degeneracy for a single mode is:

$$\Psi_{l+m}(L, R_{c,i}, R_{c,e}) = |\phi_{l+m} - \operatorname{round}(\phi_{l+m})|.$$

Figure of merit for combining all modes up to the order N:

$$\Theta_N(L, R_{c,i}, R_{c,e}) = \frac{1}{\sqrt{\sum_{k=1}^N \frac{1}{\Psi_k^2} \frac{1}{k!}}}$$

((O)) EGO

III EGO

Choice of ROCs/beam size: Sensitivity vs Mode-non-degeneracy

- In general mode-nondegeneracy and sensitivity go opposite.
- Asymmetric ROCs are beneficial:
 - For identical mode-nondegeneracy (parallel to arrows in lower plot) and even slightly increased senstivity we can reduce the beam size in the CITF from 6 to 5.5 cm.

	input mirror	end mirror
beam radius [mm]	56	65
ROC [m]	1416	1646

 Table 8: Design parameter of the AdV arm cavity geometry.

IIOIII EGO

Which are the main fundamental noise sources limiting Virgo ?

- Suspension thermal noise (low frequencies)
- Mirror thermal noise (mid frequencies)
- Shot noise (high frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

How can we reduce the shot noise contribution?

- Shot noise is proportional to sqrt(light power)
- Signal is directly proportional to light power
- In total our signal to shot noise ratio improves with sqrt(light power)
- > Ways to increase the light power:
 - Bigger laser: Virgo = 20W, Advanced Virgo >165W
 - Higher arm cavity finesse
 - Stored light power: Virgo = 4kw, Advanced Virgo = 760kW
- Please note: Shot noise is only one of two components of the so-called quantum noise!

What is quantum noise?

- Quantum noise is comprised of photon shot noise at high frequencies and photon radiation pressure noise at low frequencies.
- The photons in a laser beam are not equally distributed, but follow a Poisson statistic.

What is quantum noise?

- Quantum noise is comprised of photon shot noise at high frequencies and photon radiation pressure noise at low frequencies.
- The photons in a laser beam are not equally distributed, but follow a Poisson statistic.

photon radiation pressure noise

photon shot noise

III EGO

The Standard Quantum Limit (SQL)

- The SQL is the minimal sum of shot noise and radiation pressure noise.
- Using a classical quantum measurement the SQL represents the lowest achievable noise.
 V.B. Braginsky and F.Y. Khalili: Rev. Mod. Phys. 68 (1996)

UNIVERSITYOF BIRMINGHAM

((O)) EGO

The Standard Quantum Limit (SQL)

III EGO

Which are the main fundamental noise sources limiting Virgo ?

- Suspension thermal noise (low frequencies)
- Mirror thermal noise (mid frequencies)
- Shot noise (high frequencies)

http://wwwcascina.virgo.infn.it/senscurve/

III EGO

Advanced Virgo sensitivity

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories
 - ➡ Advanced LIGO, LGCT, GEO-HF

Techniques to make the interferometer more robust. Just that you have heard about them ...

What will a 3rd Generation Interferometer look like ?

- How to build the Einstein Telescope (ET)?
 - Geometry and shape
 - How to reach the sensitivity?

VESF School, Pisa, May 2009

IIOIII EGO

Thermal compensation

- Ring heater to change the curvature of each mirror:
 - Introducing temperature gradient in mirror substrate.
 - Thermal expansion bends the mirror.
- CO₂ act on compensation plates:
 - Relative intensity noise (radition pressure) prohibits to act directly on mirror.
 - Introducing additional silica plates and use the temperature dependent index of refraction to correct wavefront curvature.

Non-degenerate Recycling cavities

- Motivation: Thermal effects or misalignments scatter light into higher-order modes so that optical signal is lost. Non-degenerate cavities reduce this effect.
- Commissioning experience shows that degenerate cavities cause problems for control signals. Y. Pan showed in 2006 that also GW signal is lost.

Non-degenerate recycling cavity

IIOIII EGO

A possible optical layout

Design of Non-degenerate Recycling Cavity

- Proper design of the non-degenerate Recycling Cavity is rather complicated ...
- Here I concentrate on a single aspect: Infrastructure

- Folded beam to increase recycling cavity length
- PRM3 and PRM2 are (de)focusing elements.
- Infrastructure problems:
 - Need to suspend more than 1 optic per vacuum tower
 - Need large vacuum tubes to fit (larger) folded beams
 - Non perpendicular angle of incidence = losses due to astigmatism

DC-readout

- Initial Virgo uses heterodyne readout for the GW signal.
- Advanced Virgo will use DC-readout (a special case of homodyne detection).

VESF School, Pisa, May 2009

III EGO

Advanced Virgo: Executive Summary

AdV O	verview, Part I	
Subsystem and Parameters	AdV Baseline Design	Initial Virgo Implementation
Sensitivity		
Binary Neutron Star Inspiral Range	145 Mpc	11 Mpc
Anticipated Strain Sensitivity	$3.5 \cdot 10^{-24} / \sqrt{\text{Hz}}$	$4 \cdot 10^{-23} / \sqrt{\text{Hz}}$
Displacement Sensitivity	$1 \cdot 10^{-20} \text{m} / \sqrt{\text{Hz}}$	$1 \cdot 10^{-19} \mathrm{m}/\sqrt{\mathrm{Hz}}$
Instrument Topology		
Interferometer	Michelson	Michelson
Power Enhancement	Armcavities and Power Recycling	Armcavities and Power Recycling
Signal Enhancement	Signal Recycling	n.a.
Laser and Optical Powers		
Laser Wavelength	1064 nm	1064 nm
Optical Power at Laser Output	>165 W	20 W
Optical Power at Interferometer Input	125 W	8 W
Optical Power at Test Masses	760 kW (TBC)	4 kW (TBC)
Optical Power on Beam Splitter	2.7 kW	0.3 kW
Test Masses		
Mirror Material	Fused Silica	Fused Silica
Main Test Mass Diameter	35 cm	35 cm
Main Test Mass Weight	42 kg	21 kg
Test Mass Surfaces and Coati	ngs	b cale o
Coating Material	Ti doped Ta ₂ O ₅	Ta ₂ O ₅
Roughness	< 1 Angstrom	< 0.5 Angstrom
Flatness	0.5 nm RMS	< 8 nm RMS
Losses per Surface	37.5 ppm	250 ppm (measured)
Test Mass ROC	Input Mirror $= 1416 \text{ m}$ End Mirror $= 1646 \text{ m}$	Input Mirror = flat End Mirror = 3600 m
Beam Radius at Input Mirror	56 mm	21 mm
Thermal Compensation		
Thermal Actuators	CO ₂ -Lasers and Ring Heater	CO ₂ -Lasers
Actuation Points	Compensation Plates and directly at Mirrors	Directly at Mirrors

AdV Ove	rview, Part II	
Subsystem and Parameters	AdV Preliminary Design	Initial Virgo Implementation
Suspension		
Seismic Isolation System	Superattenuator	Superattenuator
Degrees of Freedom of Inverted	6	4
Pendulum Inertial Control		
Suspension Fibres	Fused Silica Fibres (tapered)	Steel Wires
Vacuum System		
Pressure	$2 \cdot 10^{-9}$ mbar	$2 \cdot 10^{-7} \mathrm{mbar}$
Injection System		
Input mode cleaner throughput	>90%	85% (meas.)
Detection System		
GW Signal Readout	DC-Readout	Heterodyne (RF)
Output Mode Cleaner	RF Sidebands and	Higher Order Modes
Suppression	Higher Order Modes	
Main Photo Diode Environment	in Vacuum	in Air
Lengths		
Arm Cavity Length	3 km	3 km
Input Mode Cleaner	144 m	144 m
Power Recycling Cavity	28 m	10 m
Signal Recycling Cavity	28 m	n.a.
Interferometric Sensing and C	ontrol	
Lock Acquisition Strategy	Auxiliary Lasers (different wavelength)	Main Laser
Number of RF Modulations	3	1
Schnupp Asymmetry	4 cm	85 cm
Recycling Cavity Design	Non-degenerate	Marginally stable
Signal Recycling Parameter		
Signal Recycling Mirror Transmittance	11 %	n.a.
Signal Recycling Tuning	0.15 rad	n.a.

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories
 - ➡ Advanced LIGO, LGCT, GEO-HF

Signal Recycling: Possibility for tunable GW microphones

What will a 3rd Generation Interferometer look like ?

- How to build the Einstein Telescope (ET)?
 - Geometry and shape
 - How to reach the sensitivity?

III EGO

How to listen to the Universe?

- > Advanced Virgo is a hyper-sensitivity microphone to listen to the Universe.
- Each astrophysical source has its own sound or tone.
- This microphone can be tuned 'similar' to a radio receiver.

((O))) EGO

Fundamental noise limits for Advanced Virgo

 Advanced Virgo will be limited by quantum noise at nearly all frequencies of interest.

 GOAL: Optimise quantum noise for maximal science output.

III EGO

Limits of the optimization

- Our optimisation is limited by Coating thermal noise and Suspension thermal noise.
- Quantum noise to be optimised!

In order to understand the 'Resonant Sideband Extraction' of Advanced Virgo it is useful to first have a look at a simpler example:

Signal Recycling in GEO600

- GEO600 is so far the only detector using Signal Recycling.
- Signal Recycling can beat the SQL.
- All advanced interferometers will use Signal Recycling !!
- Signal Recycling is easy to understand if you just think of it as an additional resonator for the GW-signal inside the ineterferometer.

PER

Short Exkursion: Signal recycling in GEO600

ARDUA ALTA

((O))) EGO

Tuning of Signal-Recycling

The tuning of the Signal-Recycling resonance is determined by the microscopic position of the Signal Recycling mirror. Short Exkursion: Signal recycling in GEO600

((O))) EGO

Bandwidth of Signal-Recycling

The bandwidth of the Signal-Recycling resonance is determined by the reflectivity of Signal Recycling mirror.

((O)) EGO

Optimization Parameter 1: Signal-Recycling (de)tuning

- > Frequency of pure optical resonance goes down with SR-tuning.
- Frequency of opto-mechanical resonance goes up with SR-tuning

Optical Springs & Optical Rigidity

- Detuned cavities can be used to create optical springs.
- Optical springs couple the mirrors of a cavity with a spring constant equivalent to the stiffness of diamond.
- In a full Michelson interferometer detuned Signal Recycling causes an optical spring resonance.

((O)) EGO

((O)) EGO

Optimization Parameter 2: Signal-Recycling mirror transmittance

Resonances are less developed for larger SR transmittance.

III EGO

Optimization Parameter 3: Laser-Input-Power

- High frequency sensitivity improves with higher power (Shotnoise)
- Low frequency sensitivity decreases with higher power (Radiation pressure noise)

Figure of merit: Inspiral

Inspiral ranges for BHBH and NSNS coalesence:

[1] Damour, Iyer and Sathyaprakash, Phys. Rev. D 62, 084036 (2000).

[2] B. S. Sathyaprakash, "Two PN Chirps for injection into GEO", GEO Internal Document

- Parameters usually used:
 - NS mass = 1.4 solar masses
 - BH mass = 10 solar masses
 - **SNR = 8**
 - Averaged sky location

III EGO

Example: Optimizing 2 Parameters

III EGO

Example: Optimizing 2 Parameters

III EGO

Example: Optimizing 3 Parameter for Inspiral range

- Scanning 3 parameter at the same time:
 - SR-tuning
 - SR-trans
 - Input Power
- Using a video to display 4th dimension.

((O)) EGO

Optimal configurations

Curves show the optimal sensitivity for a single source type.

III EGO

Which is the most promising source?

Binary neutron star inspirals:

Based on observations of	model	merger rate $(Myr^{-1}MWEG^{-1})$	detection rate (yr^{-1})
existing binary stars	empirical	3 - 190	0.4 - 26
Based on models of binary	A	12 - 19	1.6 - 2.6
star formation and evolution	В	7.6 - 12	1 - 1.6
	С	68 - 101	9.2 - 14

Expected event rates seen by Advanced Virgo: ~1 to 10 events per year.

Binary neutron star inspirals are chosen to be the primary target for Advanced Virgo.

<u>Bi</u>	nary black hole inspirals:					
	Model	\mathcal{M}/M_\odot range	$d_{eff-sight}$ Mpc	merger rates Myr^{-1}	AdV detection rate yr^{-1}	I
	А	5-8	613	0.02 - 0.03	0.2 - 0.3	I
	С	2.5 - 8.5	545	7.7 - 11	52 - 75	I
L						I

C.Kim, V.Kalogera and D.Lorimer: "Effect of PSRJ0737-3039 on the DNS Merger Rate and Implications for GW Detection", astro-ph:0608280 http://it.arxiv.org/ abs/astro-ph/0608280.

K.Belczynski, R.E.Taam, V.Kalogera, F.A.Rasio, T.Buli:, "On the rarity of double black hole binaries: consequences for gravitational-wave detection", The Astrophysical Journal 662:1 (2007) 504-511.

III EGO

When will we detect gravitational waves ??

- When Advanced Virgo and Advanced LIGO come online WE WILL SEE GRAVITATIONAL WAVES!
- … if not, then something is completely wrong with our understanding of General Relativity.

((O)) EGO

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories

Advanced LIGO, LGCT, GEO-HF

What else is around in other parts of the world?

What will a 3rd Generation Interferometer look like ?

- How to build the Einstein Telescope (ET)?
 - Geometry and shape
 - How to reach the sensitivity?

III EGO

Specialties of other 2nd generation instruments

- > Advanced LIGO:
 - 3 instruments of 4km length
 - Construction already started !!
 - Design pretty similar to Advanced Virgo, apart from seismic isolation: 4 stage pendulums (boosted GEO design)
- LGCT:
 - Cryogenic temperatures (reduce thermal noises)
 - Underground location in Kamioka mine.
- ➢ GEO-HF:
 - Quantum noise reduction by means of squeezed light injection.

((O)) EGO

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories
 - Advanced LIGO, LGCT, GEO-HF

What will a 3rd Generation Interferometer look like ?

How to build the Einstein Telescope (ET)?

Geometry and shape

How to reach the sensitivity?

What else is around in other parts of the world?

- Start around 2020(?)
- Underground location
- ~30km integrated tunnel length (?)
- Myriads of new possibilities and challenges !!
- > Plenty of new Science...

((O))) EGO

Main driver for going underground: Gravity Gradient noise

What will be the shape of ET?

Figure 2. A comparison of several geometries for future ground-based detectors: (*A*) A simple Michelson interferometer is sensitive only to a linear combination of the two polarization amplitudes. (*B*) Two co-aligned Michelson interferometers provide redundancy and the possibility to generate a null-stream (and as for case A are sensitive only to a linear combination of the two polarization amplitudes). (*C*) Two Michelson interferometers rotated by 45° with respect to each other can fully resolve both polarization amplitudes. (*D*) Three rotated Michelson interferometers provide redundancy and the possibility to generate a null-stream. They also can measure both polarizations (the geometries shown as C and D feature intersection tubes. Similar geometries in which the Michelson interferometers do not overlap might be more practical, depending on the properties of the detector site, see [14]). (*E*) A LISA-like triangular configuration, in which the interferometer arms are single cavities and there is no optical recombination. (*F*) A triple Michelson interferometer solution consisting of three individual Michelson interferometers.

PER AD ARDUA ALTA

Both solutions have an integrated tunnel length of 30 km, they can resolve both GW polarisations, feature redundant interferometers and have equivalent sensitivity.

The triangle reduces the number of end stations and the enclosed area! (Possibly, better vetos or noise reductions are possible in the triangle)

Slide stolen from A.Freise

III EGO

Shape independent of actual interferometer configuration

> All different interferometer types can be formed into L-shape

III EGO

Shape independent of actual interferometer configuration

((O)) EGO

Overview

What do we need to change to make our instruments 2nd Generation observatories ?

Details of 2nd Generation interferometer: Example Advanced Virgo

- Noise limits: Suspension thermal noise, Coating Brownian noise, Quantum noise
- Important Techniques: Thermal compensation, NDRC, DC-readout
- Sensitivity optimisation and observation prospects
- Other 2nd Generation GW Observatories
 - Advanced LIGO, LGCT, GEO-HF

What will a 3rd Generation Interferometer look like ?

- How to build the Einstein Telescope (ET)?
 - Geometry and shape

How to reach the sensitivity?

Brute Force Approach? Xylophone?

The starting point

- We consider:
 - Michelson topology with dual recycling.
 - One detector covering the full frequency band
 - A single detector (no network)
- Start from a 2nd Generation instrument.
- Each fundamental noise at least for some frequencies above the ET target.

=> OUR TASK: All fundamental noises have to be improved !! 2nd Generation design sensitivity

((O))) EGO

Step 1: Increasing the arm length

DRIVER: All displacement noises ACTION: Increase arm length from 3km to 10km EFFECT: Decrease all displacement noises by a factor 3.3 SIDE EFFECTS: Decrease in residual gas pressure Change of effective Signal recycling tuning

((O))) EGO

Step 2: Optimising signal recycling

DRIVER: Quantum noise

ACTION: From detuned SR to tuned SR (with 10% transmittance)

- EFFECTS: Reduced shot noise by ~ factor 7 at high freqs
 - Reduced radiation pressure by ~ factor 2 at low freqs
 - Reduced peak sensitivity by ~ factor sqrt(2) :(

((O))) EGO

Step 3: Increasing the laser power

DRIVER: Shot noise at high frequencies ACTION: Increase laser power (@ ifo input) from 125W to 500W EFFECT: Reduced shot noise by a factor of 2 SIDE EFFECTS: Increased radiation pressure noise by a factor 2

((O))) EGO

Step 4: Quantum noise suppression

DRIVER: Shot noise at high frequencies

ACTION: Introduced 10dB of squeezing (frequency depend angle)

EFFECT: Decreases the shot noise by a factor 3

SIDE EFFECTS: Decreases radiation pressure noise by a factor 3

III EGO

Increasing the beam size to reduce Coating Brownian noise

Increasing the beam size at the mirrors reduces the contribution of Coating Brownian.

Coating Brownian noise of one mirror:

$$S_x(f) = rac{4k_{
m B}T}{\pi^2 f Y} rac{d}{r_0^2} \left(rac{Y'}{Y} \phi_{\parallel} + rac{Y}{Y'} \phi_{\perp}
ight)$$
beam radius on mirror

Please note: a beam radius of 12cm requires mirrors of 60 to 70cm diameter

Step 5: Increasing the beam size

DRIVER: Coating Brownian noise

ACTION: Increase of beam radius from 6 to 12cm

EFFECT: Decrease of Coating Brownian by a factor 2

SIDE EFFECTS: Decrease of Substrate Brownian noise (~factor 2)

- Decrease of Thermo-optic noise (~factor 2)
- Decrease of residual gas pressure noise (~10-20%)

((O)) EGO

((O))) EGO

Step 6: Cooling the test masses

DRIVER: Coating Brownian noise ACTION: Reduce the test mass temperature from 290K to 20K EFFECT: Decrease Brownian by ~ factor of 4 SIDE EFFECTS: Decrease of substrate Brownian Decrease of thermo-optic noise

((O))) EGO

Step 7: Longer Suspensions

DRIVER: Seismic noise

ACTION: Build 50m tall 5 stage suspension (corner freq = 0.158 Hz)

EFFECT: Decrease seismic noise by many orders of magnitude or pushes the seismic wall from 10 Hz to about 1.5 Hz

III EGO

UNIVERSITY^{OF} BIRMINGHAM

Tackling Gravity Gradient noise: going underground

III EGO

Step 8: Going underground

DRIVER: Gravity gradient noise ACTION: Go from the surface to underground location EFFECT: Decrease gravity gradients by a factor 20 SIDE EFFECTS: Decrease in seismic noise by a factor 20

((O))) EGO

Step 9: Gravity gradient suppression

DRIVER: Gravity gradient noise

ACTION: Active subtraction of the gravity gradients

EFFECT: Decrease gravity gradient noise by a factor 50.

((O))) EGO

Step 10: Heavier mirrors

DRIVER: Quantum noise at low frequencies ACTION: Increase test mass weight from 42 kg to 120 kg EFFECT: Decrease of radiation pressure noise

III EGO

	advanced detector	potential ET design	
Arm length	3 km	10 km	
SR-phase	detuned (0.15)	tuned (0.0)	
SR transmittance	11 %	10 %	
Input power (after IMC)	$125\mathrm{W}$	$500\mathrm{W}$	
Arm power	$0.75\mathrm{MW}$	3 MW	
Quantum noise suppression	none	10 dB	
Beam radius	6 cm	$12\mathrm{cm}$	
Temperature	290 K	$20\mathrm{K}$	
Suspension	Superattenuator	5 stages of each 10 m length	
Seismic	$1 \cdot 10^{-7} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Cascina)	$5 \cdot 10^{-9} \text{ m}/f^2$ for $f > 1 \text{ Hz}$ (Kamioka)	
Gravity gradient reduction	none	factor 50 required (cave shaping)	
Mirror masses	$42 \mathrm{kg}$	$120 \mathrm{kg}$	
BNS range	$150\mathrm{Mpc}$	$2650\mathrm{Mpc}$	
BBH range	800 Mpc	$17700\mathrm{Mpc}$	

III EGO

Motivation for Xylophone observatories

- Due to residual absorption in substrates and coatings high optical power (3MW) and cryogenic test masses (20K) don't go easily together.
- IDEA: Split the detection band into 2 or 3 instruments, each dedicated for a certain frequency range. All 'xylophone' interferometer together give the full sensitivity.
- Example of a 2-tone xylophone:
 - Low frequency: low power and cryogenic
 - High frequency: high power and room temperature

PER AD ARDUA ALTA

Xylophone: More than one detector to cover the full bandwidth

Low Frequency IFO: low optical power, cryogenic test masses, sophisticated low frequency suspension, underground, heavy test masses. High Frquency IFO: high optical power, room temperature, surface location, squeezed light

((Q)) EGO

END