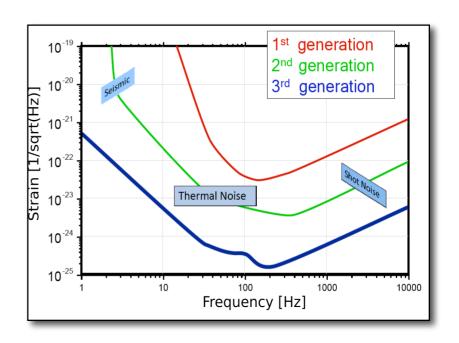


News on the ET sensitivity curve

Stefan Hild for WP3

University of Birmingham

ET WP4 meeting, Cardiff, March 2009

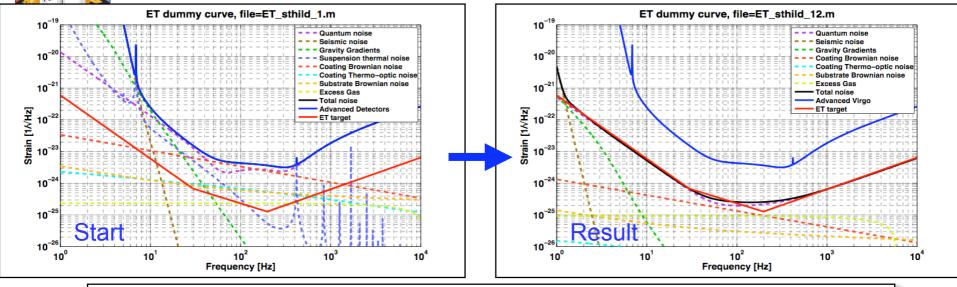

Overview

- These slides do not represent any coherent analysis and are only thought to provide an overview of various ongoing activities and ideas connected to the ET sensitivity.
- Topics of this talk:
 - Overview of available sensitivity curves.
 - Showing the weaknesses of the different curves.
 - Requests for various input from WP4 to sensitivity curve discussions.
 - Summary of what are the next steps towards a 'really' realistic sensitivity curve.

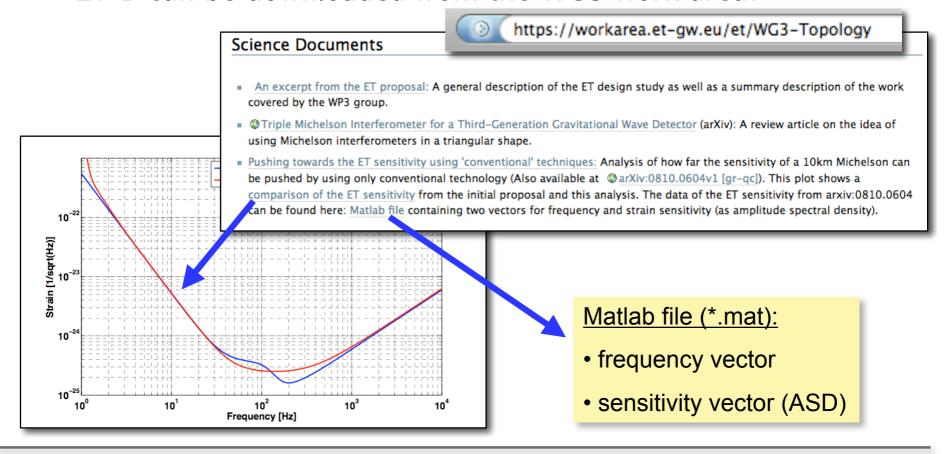
The 'famous' ET sensitivity (ET-A)

- Blue line = 'famous' curve from an old FP6 proposal 2004.
- To avoid complicated names I call this sensitivity 'ET-A'.
- This curve is a good design target, however today we know that this curve is not necessarily realistic:
 - Curve entirely limited by quantum noise.
 - Gravity gradient noise not included.
 - Suspension thermal noise not included.
 - Not (well) documented.

UNIVERSITYOF BIRMINGHAM


ET sensitivity from arXiv:0810.0604 (ET-B)

- Aiming for a more realistic noise budget for ET.
- Used approach:
 - Only using conventional technologies (either available or up-scaled).
 - Starting from a 2nd generation instrument.
 - Configuration: Michelson + Arm cavities + power and signal recycling.
 - Arm length 10km.
 - Cover the full frequency band with a single instrument.
- Documentation and details can be found in S.Hild et al: arXiv:0810.0604 or at http://www.sr.bham.ac.uk/~hild/presentations/ET_brute_force.ppt


	advanced detector	potential ET design
Arm length	$3\mathrm{km}$	$10\mathrm{km}$
SR-phase	detuned (0.15)	tuned (0.0)
SR transmittance	11 %	10 %
Input power (after IMC)	$125\mathrm{W}$	$500\mathrm{W}$
Arm power	$0.75\mathrm{MW}$	$3\mathrm{MW}$
Quantum noise suppression	none	$10\mathrm{dB}$
Beam radius	$6\mathrm{cm}$	$12\mathrm{cm}$
Temperature	290 K	$20\mathrm{K}$
Suspension	Superattenuator	5 stages of each 10 m length
Seismic	$1 \cdot 10^{-7} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Cascina)	$5 \cdot 10^{-9} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Kamioka)
Gravity gradient reduction	none	factor 50 required (cave shaping)
Mirror masses	$42\mathrm{kg}$	$120\mathrm{kg}$
BNS range	$150\mathrm{Mpc}$	$2650\mathrm{Mpc}$
BBH range	$800\mathrm{Mpc}$	$17700\mathrm{Mpc}$

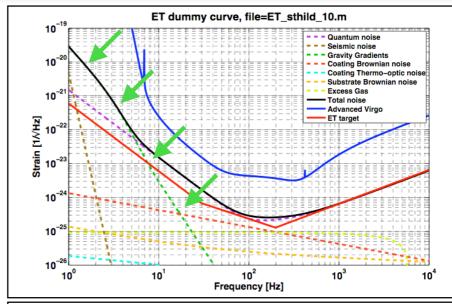
Availability of ET-B

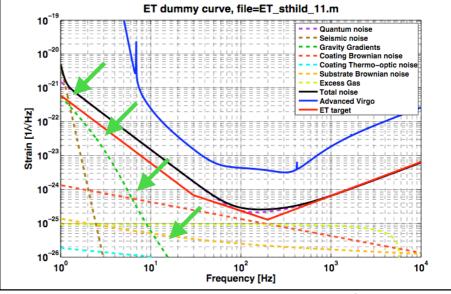
ET-B can be downloaded from the WG3 work area:

Major Weaknesses of ET-B

- Still no suspension thermal noise included.
- Gravity gradient noise for underground site so far only preliminary.
- Thermal noise of cryogenic temperatures need to be checked by experts.
- How can high optical power (several megawatts) go together with cryogenic mirrors (20K)?

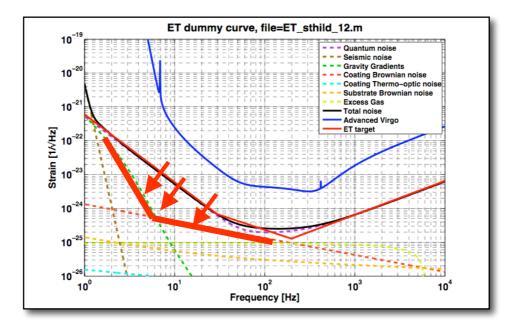
Nevertheless, there is plenty to learn from ET-B ...




UNIVERSITYOF BIRMINGHAM

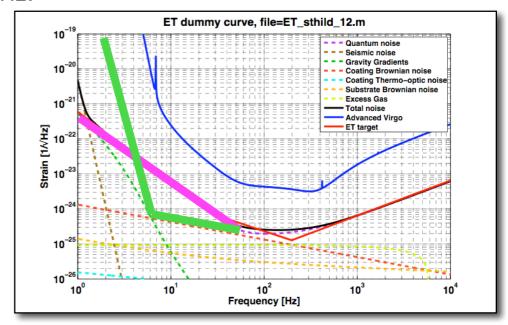
Some remarks to ET-B

- Gravity Gradient noise will be extremely challenging!
- Even with a quiet underground site we are still missing a factor 50 reduction to achieve target at 1Hz sensitivity.
 - Clever Cave shaping?
 - Measuring seismic and coupling to allow subtraction?



Some remarks to ET-B

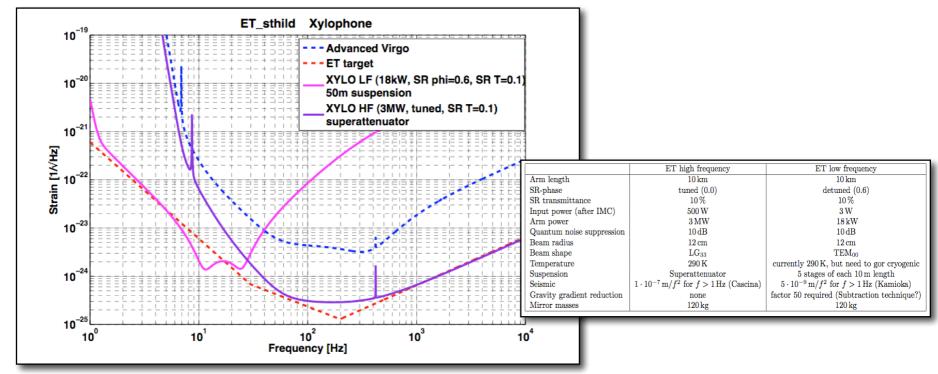
However, if we would be able to deal with gravity gradient noise, then there might be a chance to get some 'easy and cheap' (heavier mirrors) increase of the sensitivity in the range between 3 and 30 Hz.



WP4 input for sensitivity trade-offs?

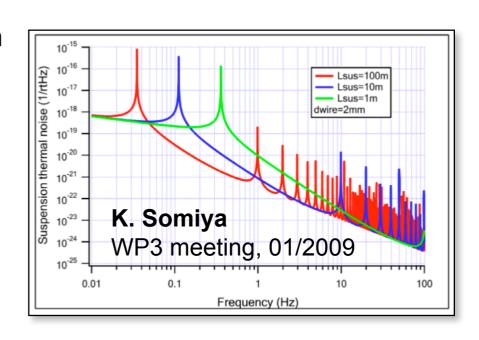
- I guess for WP1-WP3 it would be interesting to get input from WP4 for sensitivity trade-offs:
 - ⇒ To achieve ET-A around 1Hz will be experimentally very challenging/close to impossible.
 - ⇒ However, as shown on the previous slide we might be able to do much better than ET-A around 10 Hz.
- Can we trade-off a poor sensitivity below 3 Hz, by improved sensitivity around 10 Hz?
- How does the science we can do compare for the sensitivities displayed in green and pink ??

Xylophone options


- For various reasons (for instance high power vs low temperature conflict) it might be beneficial to split the detection band into several detectors:
 - Xylophone idea: Riccardo DeSalvo, Amaldi 2003.
 - Each detector covers only a part of the targeted detection band.
 - All detectors together will give the targeted sensitivity.
- Perhaps ET could be composed of at least 2, maybe 3 xylophone interferometers.
- Question for WP4: Are there any disadvantages connected to a xylophone ET compared to a single broad band detector?

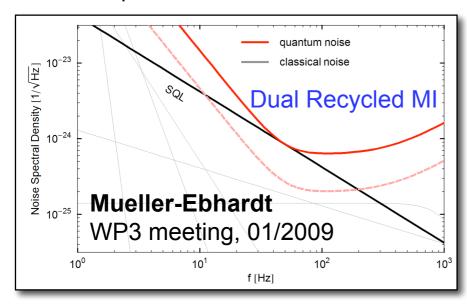
UNIVERSITY^{OF} BIRMINGHAM

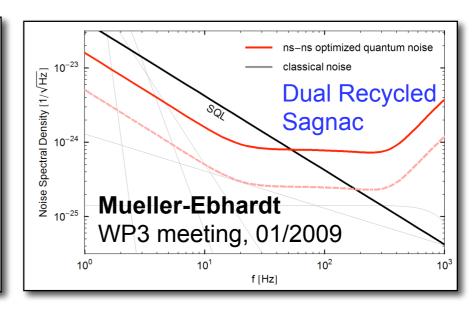
Xylophone Example: ET-B-Xylo


- HF detector: high power (3MW), room temperature, surface location, normal suspensions, LG33 mode, no gravity gradient noise subtraction...
- ➤ LF detector: low power (18kW), cryogenic, underground location, 50m suspensions, TEM00 mode, gravity gradient subtraction...

Next steps I: Suspension Thermal noise

- We need to properly include suspension thermal noise into our models:
 - Recent investigations for Advanced Virgo showed that there are always surprises...
- Are violin modes a problem from WP4 point of view?
 - ⇒ How much science do we loose when the sensitivity is spoiled with a 10Hzcomb of lines?
 - ⇒ What is the closest separation of violin modes that are tolerable? (50 Hz, 10 Hz, 2 Hz?)





Next steps II: Advanced Configurations

- We want to use the dual-recycled MI from ET-B as reference for analyzing more advanced configurations:
 - Dual Recycled Sagnac with arm cavities
 - Optical Levers

Hannover has already computed and optimised the quantum noise of various configurations. However, still need to implement all other noise contributions for these new configurations.

Summary

- ET-A is not (and has never been) an official ET target.
- ET-B gives roughly the same sensitivity as ET-A, but is more realistic and better documented.
 - Data available on the web.

> Input required from WP4:

- Can we trade-off worse sensitivity below 3 Hz for better sensitivity around 10 Hz?
- Any problems if we go for xylophone configurations?
- How critical are line forests (violin modes from tall suspensions) for data analysis?
- ET-A and ET-B will NOT be the final ET-sensitivity! People are working on this topic and there will be more realistic sensitivity curves (ET-C, ET-D etc) coming over the next months. => Stay tuned!
- Please keep in mind: Providing a comprehensive and realistic sensitivity curve for ET is one of the main OUTCOMES of the design study.

PER AD ARDUA ALTA

END