

The ET optical layout

Stefan Hild for the ET-WP3 working group

3rd ET General meeting, Budapest, November 2010

Overview

- Where it all starts: ... the sensitivity target.
- ET-D quickly explained
- From ET-D to the full ET observatory
- ET optical layout:
 - Arm cavity design
 - Central interferometer design

The starting point for 'everything' ...

 At the current stage of the design nearly everything is done for sensitivity reasons.

Evolution of ET sensitivity curves:

- ET-B: Single broadband detector arXiv:0810.0604v2 [gr-qc] (2008)
- ET-C: first Xylophone approach CQG 27 (2010) 015003
- ET-D: refined
 Xylophone approach.

FLESCOP

ET-C/ET-D Core interferometers

ET third GM, Budapest 2010

Seismic noise

Gravity Gradient Noise

- ET-B and ET-C assume a medium quiet site + factor 50 GGN subtraction.
- ET-D considers very quiet underground site (about 5e-10/f2*m/sqrt(Hz)) at Black Forest.
- Please note:
 - ET measurement campaign showed several sites on the same level or even better than the BFO site (see talk by M.Beker).
 - Biggest uncertainty in beta

$$N_{\rm GG}(f)^2 = \frac{4 \cdot \beta^2 \cdot G^2 \cdot \rho_r^2}{L^2 \cdot f^4} \cdot X_{\rm seis}^2,$$

S.Hild

Suspension Thermal Noise

- Silicon fibers of 3mm diameter and 2m length.
- Test mass temperature = 10K
- Penulitmate mass temperature = 2K

- P. Puppo, Journal of Physics: Conference Series 228, (2010) 012031
- P. Puppo and F. Ricci, General Relativity and Gravitation, Springer Netherlands, 2010, 1-13
- F.Ricci, presentation at GWADW 2010,Kyoto. Available at:http://gw.icrr.u-tokyo.ac.jp/gwadw2010/ program/2010_GWADW_Ricci.pdf

Squeezing losses in filter cavities

See talk by Andre Thuering

ET third GM, Budapest 2010

S.Hild

Summary of ET-D parameters

Parameter	ET-D-HF	ET-D-LF
Arm length	$10\mathrm{km}$	$10\mathrm{km}$
Input power (after IMC)	$500\mathrm{W}$	$3\mathrm{W}$
Arm power	$3\mathrm{MW}$	$18 \mathrm{kW}$
Temperature	$290\mathrm{K}$	$10\mathrm{K}$
Mirror material	Fused Silica	Silicon
Mirror diameter / thickness	$62\mathrm{cm}$ / $30\mathrm{cm}$	$\min 45 \mathrm{cm}/\mathrm{TBD}$
Mirror masses	200 kg	211 kg
Laser wavelength	$1064\mathrm{nm}$	$1550\mathrm{nm}$
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10%	20%
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	$1 imes10\mathrm{km}$	$2 imes 10\mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	LG_{33}	TEM_{00}
Beam radius	$7.25\mathrm{cm}$	$9\mathrm{cm}$
Scatter loss per surface	$37.5\mathrm{ppm}$	$37.5\mathrm{ppm}$
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1 \mathrm{Hz}$)	$5\cdot 10^{-10}{ m m}/f^2$	$5\cdot 10^{-10}{ m m}/f^2$
Gravity gradient subtraction	none	none

Summary of ET-D parameters

	Parameter	ET-D-HF	ET-D-LF	
	Arm length	$10\mathrm{km}$	$10\mathrm{km}$	L
	Input power (after IMC)	$500\mathrm{W}$	3 W	L
	Arm power	$3\mathrm{MW}$	18 kW	L
_	Temperature	$290\mathrm{K}$	$10\mathrm{K}$	
	Mirror material	Fused Silica	Silicon	Π
<u>_</u>	Mirror diameter / thickness	$62\mathrm{cm}$ / $30\mathrm{cm}$	min $45\mathrm{cm}/\mathrm{~TBD}$	
a la	Mirror masses	$200 \mathrm{kg}$	211 kg	Г
e 2	Laser wavelength	$1064\mathrm{nm}$	$1550\mathrm{nm}$	L
5 5	SR-phase	tuned (0.0)	detuned (0.6)	L
	SR transmittance	10%	20%	L
L'SI	Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.	L
	Filter cavities	$1 imes10\mathrm{km}$	$2 imes10\mathrm{km}$	L
	Squeezing level	10 dB (effective)	10 dB (effective)	
500	Beam shape	LG ₃₃	TEM ₀₀	Π
	Beam radius	$7.25\mathrm{cm}$	$9\mathrm{cm}$	
-	Scatter loss per surface	$37.5\mathrm{ppm}$	$37.5\mathrm{ppm}$	Г
	Seismic isolation	SA, 8m tall	mod SA, 17 m tall	L
	Seismic (for $f > 1 \mathrm{Hz}$)	$5\cdot 10^{-10}{ m m}/f^2$	$5\cdot 10^{-10}{ m m}/f^2$	
	Gravity gradient subtraction	none	none	

ET-D Noise budgets

ET-D-LF

ET-D-HF

S.Hild

Combining the two interferometers

EINSTEIN TELESCOPE ET third GM, Budapest 2010

Overview

- Where it all starts: ... the sensitivity target.
- ET-D quickly explained
- From ET-D to the full ET observatory
- ET optical layout:
 - Arm cavity design
 - Central interferometer design

S.Hild

EINSTEIN ET third GM, Budapest 2010

ET third GM, Budapest 2010

Slide 16

- Can we pass one ifo beam through suspension of another ifo?
- In principle that does not sound impossible, perhaps rather an engineering task.
- If you do not want to cross the main arm cavities there is no way to avoid one input beam passing suspension of another ifo.

Crossed beams in a single 2m-tube?

IFO beams passing through suspensions

- HF beam would heat cryogenic LF suspension too much.
- Lots of constraints on last suspension stage of LF IFOs:
 - ✓ Need to be compliant with heat extraction requirements.

2 detectors on top of each other

- ET-LF:
 - ➢ 45cm free aperture

- ET-LF:
 - ➢ 45cm free aperture
 - > 2x5cm free space

- ET-LF:
 - ➢ 45cm free aperture
 - > 2x5cm free space
 - 2x10cm baffles

- ET-LF:
 - ➢ 45cm free aperture
 - > 2x5cm free space
 - 2x10cm baffles
 - 2x10cm liquid helium reservoir

- ET-LF:
 - ➢ 45cm free aperture
 - 2x5cm free space
 - 2x10cm baffles
 - 2x10cm liquid helium reservoir
 - 2x10cm liquid nitrogen reservoir

- ET-LF:
 - ➢ 45cm free aperture
 - 2x5cm free space
 - 2x10cm baffles
 - 2x10cm liquid helium reservoir
 - 2x10cm liquid nitrogen reservoir
 - 2x8cm tube wall + reinforcement ribs

- ET-LF:
 - ➢ 45cm free aperture
 - 2x5cm free space
 - 2x10cm baffles
 - 2x10cm liquid helium reservoir
 - 2x10cm liquid nitrogen reservoir
 - 2x8cm tube wall + reinforcement ribs
 - 2x10cm baking insulation

- ET-low frequency IFO:
 - ➢ 45cm free aperture
 - 2x5cm free space
 - 2x10cm baffles
 - 2x10cm liquid helium reservoir
 - 2x10cm liquid nitrogen reservoir
 - 2x8cm tube wall + reinforcement ribs
 - > 2x10cm baking insulation
- Total diameter required = 151cm

Tunnel Cross Section

- LF IFOs = 150cm
- HF IFOs = 120cm
- Filter cavity = 97cm
- Tunnel inside
 = 550cm

Overview

- Where it all starts: ... the sensitivity target.
- ET-D quickly explained
- From ET-D to the full ET observatory
- ET optical layout:
 - Arm cavity design
 - Central interferometer design

Arm cavity design

- Arm cavities are hearts of ET => most important part of ET.
- To reduce coating thermal noise we have to make the beams on the test masses large.

- There is a minimal beam size possible (limited by divergence of beam).
- There are upper limits of the beam size:
 - Available substrate size
 - Cavity stability

Gauss Beams in General

EINSTEIN ET third GM, Budapest 2010

S.Hild

Slide 32

Mininal Beam and Mirror Sizes

w_{\min}	=	$\sqrt{\frac{L}{\pi}}$	<u>λ</u> .
------------	---	------------------------	------------

setup	min beam radius	min mirror diameter	
	[cm]	[cm]	
LG33, 1064nm	5.8	50.2	
LG00, 1550nm	7.0	37.0	

For more details: ET-0103B-10

Realistic beam sizes

- Realistic beam and mirror sizes:
 - Pushing to towards maximum available substrate size
 - Pushing to cavity instability

Log(ROC)

IFO	λ	beam shape	mirror diameter
ET-HF	$1064\mathrm{nm}$	LG_{33}	$62\mathrm{cm}$
ET-LF	$1550\mathrm{nm}$	TEM_{00}	$45\mathrm{cm}$

For more details: ET-0103B-10

IFO	$R_{\rm C}$	w_0	z_0	w	$z_{ m R}$
ET-HF	$5147.7\mathrm{m}$	$2.27\mathrm{cm}$	$4650\mathrm{m}$	$7.25\mathrm{cm}$	$1521.3\mathrm{m}$
ET-LF	$5489\mathrm{m}$	$3.11\mathrm{cm}$	$4650\mathrm{m}$	$8.0\mathrm{cm}$	$1964\mathrm{m}$

University of Glasgow Non-degenerate Recycling cavities al a 2G

Slide 35

Why do 2G NDRC do not work for ET?

- For various reasons it would be nice to have small beams (few cm) rather than 60cm beams in the central interferometer.
- Could be achieved by focusing the beam down between IM and BS?

- In order to reduce problems from imperfect optics, the focusing should be rather gentle.
- For current dummy design we assume 700m to focus from 60cm down to 5cm.
- Thermal noise in central interferometer?

EINSTEIN ET third GM, Budapest 2010

Potential way to get NDRC for ET?

- focussing element in or near the ITM with a focal length of $f = 685 \,\mathrm{m}$
- $\bullet\,$ distance ITM-BS: $700\,\mathrm{m}$
- distance BS-MPR: 10 m
- $\bullet\,$ beam size on BS: $0.95\,\mathrm{cm}$
- $\bullet\,$ beam size on MPR: $0.86\,\mathrm{cm}$
- Rayleigh range in central interferometer: 47.0 m

- beam size on MPR: 0.81 cm
- Rayleigh range in central interferometer: 40 m
- Gouy phase: 7.6 deg
- mode separation frequency: $9\,\mathrm{kHz}$

ET-HF: LG33, 1064nm

> For more details: ET-0103B-10

ET third GM, Budapest 2010

S.Hild

Slide 38

- Sensitivity studies are converging.
- Optical design Hierarchy
 - Sensitivity => Arm cavity => Central interferometer => all the rest.

• Space for further action on Central interferometer:

- Mirror materials
- Thermal noise / beam sizes
- Thermal compensation for ET-HF
- Astigmatism
- Scattered light

ET third GM, Budapest 2010

S.Hild

Slide 40