

Advanced Virgo Beam Geometry

Stefan Hild for OSD

OSD internal review, March 2009

Executive summary: Beam Geometry

- Advanced Virgo needs to have a sensitivity competitive with Advanced LIGO in order to contribute to any network analysis.
- This requires very large beam sizes (close to instability).
- > Trade off decision taking into account:
 - Sensitivity
 - Mode non-degeneracy
 - Mirror size / clipping losses
- The current design features:
 - ➡ Beam sizes of 5.5 cm (IM) and 6.5 cm (EM).
 - ➡ The corresponding ROCs are 2% off instability.
 - ➡ The resulting sensitivity is about 30% worse than Advanced LIGO.
- Proposal for small R&D experiment to test the feasibility of the beam geometry.

And now the details ...

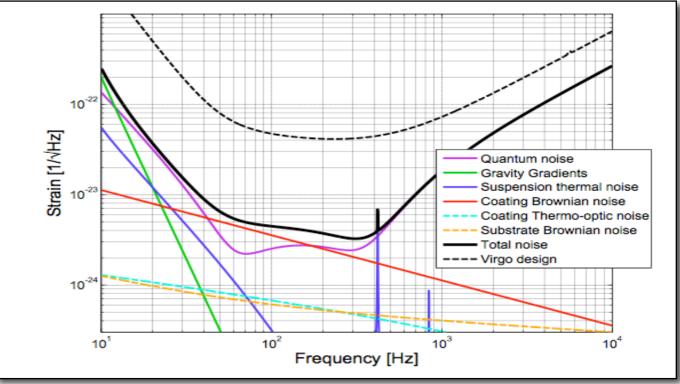

Arm Cavities: The Core of a GWD

In principle arm cavities are rather simple objects, consisting of just two mirrors and a space between them.

UNIVERSITY

BIRMINGHAM

- In reality one has to carefully choose the characteristics of the arm cavities:
 - Detector sensitivity and bandwidth.
 - Actual arm cavity design sets constraints for other subsystems.
 - Design of other subsystems sets constraints for the arm cavity design.

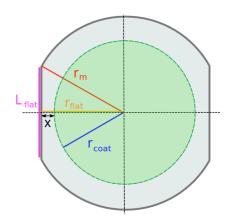


((O)) EGO

III EGO

Arm cavities and Coating Brownian noise

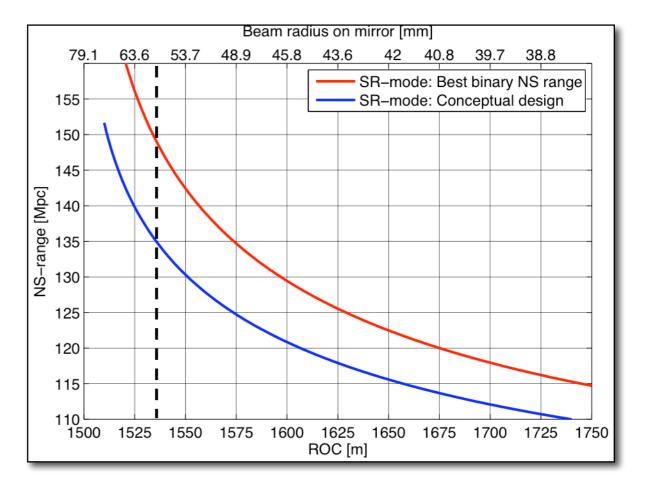
Coating Brownian noise is the limiting noise source in the mid frequency range.


Beam Geometry

- Where to put the waist inside the arm cavity?
 - Initial detectors have the waist close/at the input mirrors
- Advanced detectors: Move waist towards the cavity center.
 - Larger beam at input mirror
 - Lower overall coating Brownian noise
 - ➡ BUT: much larger beams in the central interferometer
 - may need larger BS
 - much larger optics for input and output telescope
 - Non-degenerate recycling cavities might help

How to decide on Beam Size ?

- Sensitivity
 - Advanced Virgo needs to have a sensitivity pretty close to Advanced LIGO.
 - Need to make the beams as large as possible!
- Cavity stability
 - Large beams means pushing towards instability of the cavity.
 - Cavity degeneracy sets limit for maximal beam size
- Mirror size
 - The maximum coated area might also impose a limit for the beam size.
 - Clipping losses require coating size 5 times the beam radius.
 - Consider beam sizes of up to 6.5cm.



III EGO

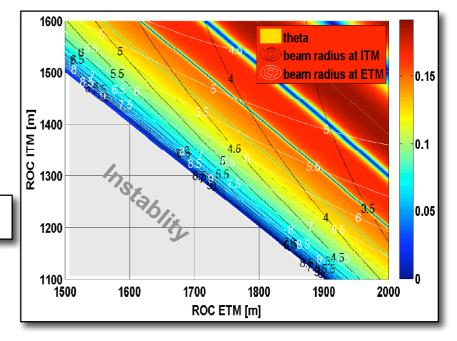
Sensitivity with symmetric ROCs

With 6cm radius and 1530m ROC: Advanced Virgo obtains about 150 Mpc.

For comaprison: Advanced LIGO will achieve a 180 to 200 Mpc.

Cavity Stability and Choice of ROCs

- Definition of mode-nondegeneracy:
 - Gouy-phase shift of mode of order l+m:


$$\phi_{l+m} = (l+m)\frac{1}{\pi}\arccos\sqrt{(1-\frac{L}{R_{c,i}})(1-\frac{L}{R_{c,e}})}.$$

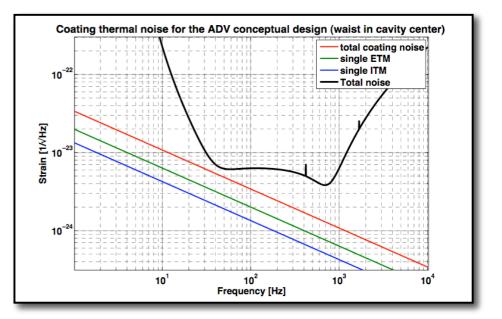
Mode-non-degeneracy for a single mode is:

$$\Psi_{l+m}(L, R_{c,i}, R_{c,e}) = |\phi_{l+m} - \operatorname{round}(\phi_{l+m})|.$$

Figure of merit for combining all modes up to the order N:

$$\Theta_N(L, R_{c,i}, R_{c,e}) = \frac{1}{\sqrt{\sum_{k=1}^N \frac{1}{\Psi_k^2} \frac{1}{k!}}}$$

((O)) EGO

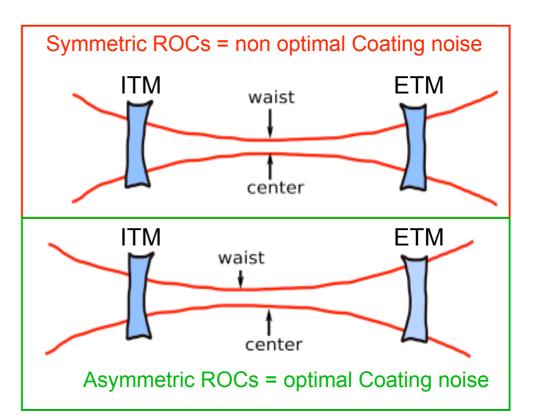

Beam Geometry

- Intuitively one would think the lowest coating noise is achieved when beam waist is at the center of the cavity (=> equal beam size at ITM and ETM),
 BUT:
- Coating noise for ITM and ETM are different, due to their different number of coating layer:

$$\overline{v} = C(S_T + \gamma^{-1}S_S),$$

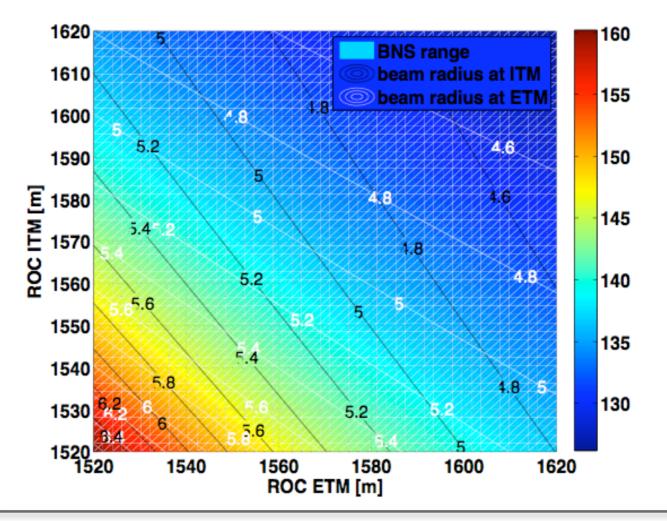
J. Agresti et al (LIGO-P060027-00-Z)

For equal beam size ETM has higher noise.

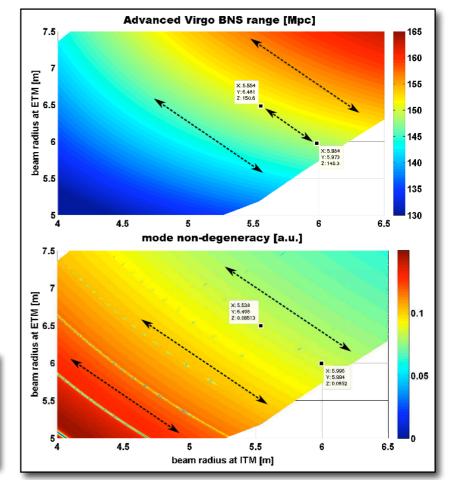


((O)) EGO

Optimal Waist Position


- In order to minimize the thermal noise we have to make the beam larger on ETM and smaller on ITM.
- Equivalent to moving the waist closer to ITM.
- Nice additional effect: the beam in the central area would be slightly smaller.

Beam Size

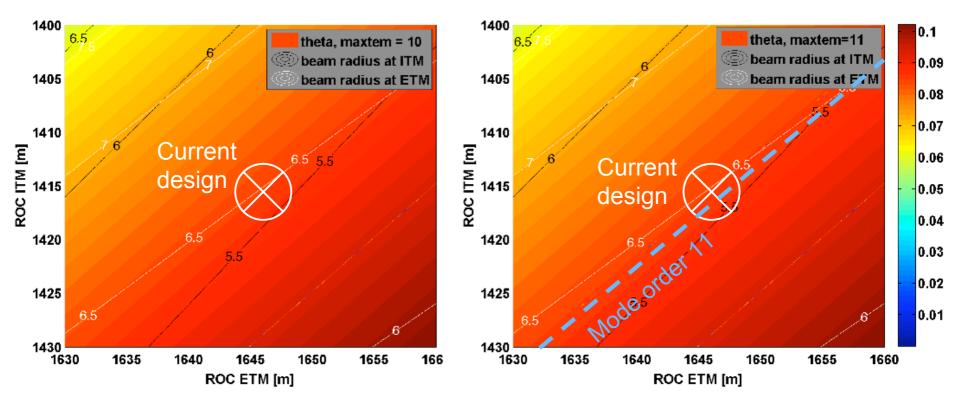

III EGO

Choice of ROCs/beam size: Sensitivity vs Mode-non-degeneracy

- In general mode-nondegeneracy and sensitivity go opposite.
- Asymmetric ROCs are beneficial:
 - For identical mode-nondegeneracy (parallel to arrows in lower plot) and even slightly increased senstivity we can reduce the beam size in the CITF from 6 to 5.5 cm.

	input mirror	end mirror
beam radius [mm]	56	65
ROC [m]	1416	1646

 Table 8: Design parameter of the AdV arm cavity geometry.

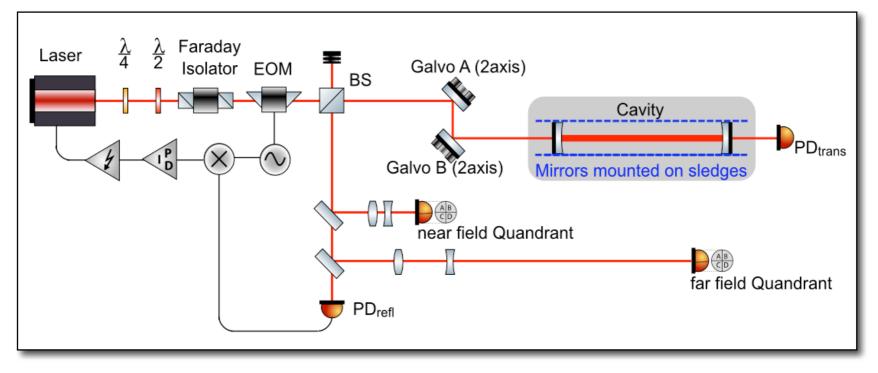


And even a bit more details ...

Determining the closest higher order mode of the proposed geometry

The higher order mode closest to being resonant in the arm cavities is of the order 11.

((O)) EGO


Proposal for a small R&D project

- The final choice of mirror ROCs needs to be taken only when the substrates are send for polishing => gives us some spare time for tests.
- Propose that one of the Virgo labs conducts the following experiment:
 - ➡ Get two small mirrors (1 or 2"):
 - High quality polishing + corrective coating (LMA)
 - Aim for ROC of 52cm.
 - Set up a non-suspended cavity of 100cm length
 - Mirrors are mounted on tracks and can be moved forth and back on mm/cm scale.
 - Make use of an auto-alignment system to ensure sufficient suppression of alignment effects.
 - Perform measurements of the cavity finesse to determine the actual losses of the cavity.
- The result of these measurements can then be compared to FFT simulations using the actual mirror maps.

((O)) EGO

Sketch of potential experimental setup

Servo loops for the differential wavefront sensing and control are omitted for clarity...

Executive summary: Beam Geometry

- Advanced Virgo needs to have a sensitivity competitive with Advanced LIGO in order to contribute to any network analysis.
- This requires very large beam sizes (close to instability).
- > Trade off decision taking into account:
 - Sensitivity
 - Mode non-degeneracy
 - Mirror size / clipping losses
- The current design features:
 - ➡ Beam sizes of 5.5 cm (IM) and 6.5 cm (EM).
 - ➡ The corresponding ROCs are 2% off instability.
 - ➡ The resulting sensitivity is about 30% worse than Advanced LIGO.
- Proposal for small R&D experiment to test the feasibility of the beam geometry.