

QCD is a key part of the Standard Model but quark confinement is a complication/interesting feature.

ATLAS
@LHC

VS

Properties of hadrons calculable from QCD if fully nonperturbative calculation is done - can test QCD/search for new physics and determine parameters (to 1%).

Applications of Lattice QCD/Lattice field theory

Particle physics

Annual proceedings of lattice conference: http://pos.sissa.it/

Hadron spectrum
Dudek, Mohler:
Lat2012

Nuclear physics

Lin: Lat2012

CKM elements

 Tarantino: Lat2012Glueballs and exotica

QCD at high temperatures

Theories beyond the Standard Model
Giedt, Panero: Lat2012
and densities
Lombardo, Aarts:
Lat2012;
Satz: Saturday

Nuclear masses and properties
Doi: Lat2012

Quantum gravity Laiho: Lat2011

Astrophysics

Young: Lat2012
condensed matter physics computational physics

Boyle: Lat2012

Lattice $\mathrm{QCD}=$ fully nonperturbative QCD calculation RECIPE

- Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of $u, d, s(+c)$ sea quarks)
- Calculate averaged "hadron
 correlators" from valence q props.
- Fit as a function of time to obtain masses and simple matrix elements
- Determine a and fix m_{q} to get results in physical units.
- extrapolate to $a=0, m_{u, d}=p h y s$ for real world. *now have phys $\mathrm{m}_{\mathrm{u}, \mathrm{d}}$ *

Example parameters for gluon configurations being made using two different formalisms for handling quarks.
mass
of u,d
quarks 0.12

Results for the masses of mesons that are long-lived and so can be well-characterised in experiment

Agreement very good - errors typically a few MeV , need to worry about em, mu-md ..

Mapping excited states is harder ..
Light isovectors: π, ρ, \ldots
Hadron Spectrum:1004.4930 Dudek: Lattice2012 BGR: 1112.1601
(huge basis of single-hadron operators, but $\mathrm{a}=0.12 \mathrm{fm}$ (anisotropic), mass $\pi=700 \mathrm{MeV}$)

lightest hybrid multiplet $=1^{--},(0,1,2)^{-+}=S$ wave $q \bar{q}\left(0^{-+}, 1^{--}\right) \times g\left(1^{+-}\right)$ strong overlap with "gluey" operators $\quad \pi_{1}(1600), \pi(1800), \pi_{2}(1880)+1^{--}$? see also charmonium: Hadron Spectrum:1204.5425

Lattice QCD sets world averages for quark masses and α_{s}

 Direct access to parameters in QCD Lagrangian means systematic errors smaller PDG av:94.3(1.2) MeV
a variety of lattice methods agree

Lattice calcs now adding QED for accurate $\mathrm{m}_{\mathrm{u}} / \mathrm{m}_{\mathrm{d}}$ Izubuchi:Lattice2012; RM123: 1303.4896

Meson decay constants

Parameterises hadronic information needed for annihilation rate to W or photon: $\Gamma \propto f^{2}$

Constraining new physics with lattice QCD

 * results at physical u/d quark masses* f_{K} / f_{π}

Annihilation of K / π to W allows CKM element
 determination given decay constants from lattice QCD
expt for $\frac{\Gamma\left(K^{+} \rightarrow \ell \nu\right)}{\Gamma\left(\pi^{+} \rightarrow \ell \nu\right)}$
$\frac{\left|V_{u s}\right| f_{K^{+}}}{\left|V_{u d}\right| f_{\pi^{+}}}=0.27598(35)_{\mathrm{Br}\left(K^{+}\right)}(25)_{E M}$
$f_{K^{+}}$
MILC configs $\quad=m_{u, d} / m_{s}$
HPQCD: 1301.1670

Comparison of results (note: $\left.f_{K^{+}}<f_{K}\right) \underset{\substack{\text { RM123:1303.4896 }}}{\text { gives by }}$ gives by 0.40(4)\% good agreement from different formalisms

* results at physical u/d quark masses*

V_{ud} from nuclear β decay now needs improvement for unitarity test!

Constraining new physics with lattice QCD: $f_{D_{s}}, f_{D}$ miLc: 1210.8431 new results using HISQ quarks on MILC $2+1+1$ configs

experimental update: new Belle results
World av: $f_{D_{s}}=257.2(4.5) \mathrm{MeV}$

MILC (Lattice2013):

$$
\begin{aligned}
& f_{D_{s}}=247.2(2.2) \mathrm{MeV} \\
& f_{D}=211.4(1.6) \mathrm{MeV}
\end{aligned}
$$

agree well with previous HPQCD:

$$
\begin{gathered}
f_{D_{s}}=248.0(2.5) \mathrm{MeV} \\
\text { HPOCD } 1008.4018 \\
f_{D}=208.3(3.4) \mathrm{MeV}
\end{gathered}
$$

HPQCD: 1206.4936

Constraining new physics with lattice QCD: $f_{B_{s}}, f_{B}$

 HPQCD: 1302.2644.
Uses improved NRQCD for b quark and HISQ u/d and s quarks on HISQ $2+1+1$ gluon configs
$f_{B_{s}}=224(5) \mathrm{MeV}$
$\operatorname{Br}\left(B_{s}^{\downarrow} \rightarrow \mu^{+} \mu^{-}\right)=$ $3.47(19) \times 10^{-9}$

quark masses*

Nov. 2012

Constraining new physics with lattice QCD: form factors

 $K \rightarrow \pi \ell \nu$NEW - now results with full continuum and chiral extrapolation. Different formalisms agree

with experiment:

$$
\begin{aligned}
& \left|V_{u s}\right| f_{K \pi}(0)=0.2163(5) \\
& \left|V_{u s}\right|=0.2238(11)^{1005.2323}
\end{aligned}
$$

MILC in progress: HISQ results with physical u/d quarks - expect $\sim 0.3 \%$ error

Form factor shapes and dependence on spectator quark:

B semi-leptonic decays and constraints on new physics

B decays with τ in final state are sensitive to form factors suppressed by lepton masses for e, μ so may see new physics.

$$
B \rightarrow D \ell \nu \quad \begin{aligned}
& \text { Fermilab/MILC: } \\
& 1206.4992 .
\end{aligned}
$$

$$
B \rightarrow \pi \ell^{+} \ell-\begin{aligned}
& 1306.0434 ; \\
& 1306.2384
\end{aligned}
$$

$$
\begin{aligned}
\frac{\operatorname{Br}(B \rightarrow D \tau \nu)}{\operatorname{Br}(B \rightarrow D \ell \nu)} & =0.316(14) \\
\ell & =e, \mu
\end{aligned}
$$

$$
\begin{aligned}
& \text { BaBar:1205.5442; }=0.440(72) \\
& 1303.0571
\end{aligned}
$$

Electromagnetic transitions provide important tests

$$
J / \psi \rightarrow \gamma \eta_{c}
$$

pion electromagnetic form factor

Different quark formalisms agree. Lattice more accurate than experiment.

Test lattice QCD vs direct experiment at low spacelike $\left.\mathrm{q}^{2} ;<\mathrm{r}^{2}\right\rangle$ sensitive to light quark mass ЕTMC: 0812.4042; JLOCD:0810.2590; Mainz:1306.2916

Muon anomalous magnetic moment anomaly $a_{\mu}=\frac{g-2}{2}=\mathcal{O}\left(10^{-3}\right)$
\quad e.g. from QED: BNL, to be improved at FNAL and J-PARC

Mainz 1112.2894 clover-quenched s $\mathrm{RBC} / \mathrm{UKQCD}$
domain wanl domain wa
1107.1497
Aubin.Blum
asqqad
heptatocosel1 Progress on HVP hep-lat/0608011

HLBL needs QCD+QED

ETM 1103.4818 twisted mass

ETM underway : $\mathrm{nf}=2+1+1$

Blum lattice2012:1301.2607

QCD contribn from hadronic vac. pol and 'light-by-light'.

$K \rightarrow \pi \pi$ and the $\Delta I=1 / 2$ rule $K \rightarrow \pi \pi_{I=2} \quad 450$ times more likely than $K \rightarrow \pi \pi_{I=0}$ nonperturbative enhancement of matrix elements of 4-quark operators from weak Hamiltonian
I=2 amplitude now calculated directly in lattice QCD; $\mathrm{I}=0$ underway

Ken Wilson

1936-2013

Originator of Lattice QCD

Conclusion

- Lattice QCD results for gold-plated meson masses, decay constants and form factors provide stringent tests of QCD/ Standard Model.
- Gives QCD parameters and some CKM elements to $1-2 \%$ and constrains Beyond the Standard Model physics.

Future

- sets of '2nd generation' gluon configs now have $m_{u, d}$ at physical value (so no extrapoln) or a down to 0.05 fm (so b quarks are 'light') also can include charm in the sea now.
- v. high statistics/large volumes needed for harder calculations (precision baryon physics, flavor singlet /glueball spectroscopy, excited states, nuclear physics) will become available with increased computer power...
Lattice 2013: Mainz, July 29th www.lattice2013.uni-mainz.de

