Precision charmonium and D physics from lattice QCD and determination of the charm quark mass

Christine Davies
University of Glasgow, HPQCD collaboration

ICHEP08
Philadelphia, July 08
QCD is key part of SM but quark confinement tricky

Lattice QCD = full QCD effects

RECIPE

• Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of sea quarks)
• Calculate averaged “hadron correlators” from valence q props.

\[< 0 | M^+ (0) M(t) | 0 > \]

• Fit for masses and simple matrix elements
• Fix \(m_q \) and determine \(a \) to get physical results
HPQCD Priority PRECISION lattice QCD i.e. \(\sim 1\% \)

- Allows non-trivial tests of QCD i.e. better than models.
- Allows accurate determin of SM parameters (inc CKM)
- Provides the underpinning for other calcs.

Possible for ‘gold-plated quantities’ i.e. stable hadron masses and weak/em decay rates to single hadron states

Statistical errors must be very good to test systematics.

Systematics from:

- disc. errors (need several \(a \) values)
- extrapoln to physical u/d masses \(m_s/10 < m_u/d < m_s/2 \)
- finite volume
- errors in fixing QCD parameters. Use:

\[\Upsilon(2S - 1S), m_\pi, m_K, m_{\eta_c}, m_\gamma \]
Recent highlight - very accurate charm physics
Charm quarks in lattice QCD - heavy or light?

Advantages of relativistic light quarks:

- $E_{\text{sim}} = m$
- PCAC relation (if enough chiral symmetry) gives $Z = 1$
- same action as for u, d, s, so cancellation in ratios

Key issue is discretisation errors:

$m = m_{a=0}(1 + A(m_c a)^2 + B(m_c a)^4 + \ldots)\]

$m_c a \approx 0.4, (m_c a)^2 \approx 0.2, \alpha_s(m_c a)^2 \approx 0.06, (m_c a)^4 \approx 0.04$

for $a \approx 0.1 \text{fm}$

Need to remove all of these errors for precision results

This is done in the Highly Improved Staggered Quark formalism, further improving Improved Staggered Quarks
Very precise D/Ds masses obtained

NO free parameters

charmonium masses, HISQ on fine MILC

D/Ds masses vs expt.

Fix m_c

lattice errors 6 MeV - a^2 extrap /error in a and em corrs

A key test of disc. errors since charmonium and D have different dynamics → stringent test of QCD.

E.Follana et al, 0706.1726[hep-lat]
Decay constants of $D/D_s/K/\pi$ to 2%.

$Br(H \rightarrow \mu \nu) \propto V_{ab}^2 f_H^2$

$f_H m_H = <0|\bar{\psi} \gamma_0 \gamma_5 \psi|H>$

f is a property of the meson calculable in lattice QCD

Value can be extracted from expt if V_{ab} known
Improved accuracy from CLEO-c

Leptonic rate \rightarrow decay constant using $V_{cs} = V_{ud}$, $V_{cd} = V_{us}$

2008

Different lattice QCD methods

$\mathbf{f_D}$ $\mathbf{f_{Ds}}$

Agree

206(9) 268(9)

3 (exptl) σ apart

207(4) 241(3)

3 different expts using different channels

200 225 250 275 300

206(9)

1st disagreement between lattice and expt. New physics?

HPQCD HISQ u,d,s sea
0706.1726[hep-lat]

FNAL/MILC u,d,s sea
LAT08 prelim.

CLEO-c, 0806.2112, ICHEP08

Belle
EPS2007

BaBar
hep-ex/0607094

ETMC u,d sea
LAT08 prelim.

no s in sea as yet

206(9)
Further checks of lattice QCD calcns important ...

1. Further masses of hadrons containing charm

Mass splitting V-PS accurately calculable

For staggered quarks there are different ‘tastes’

No dependence on m_u/d

Good agreement for all with expt. as $a \to 0$

New prelim. results on $a=0.06\text{fm}$ lattices

![Graph showing hyperfine splittings with different data points and error bars.](image)
2. Further decay constants of hadrons containing charm and strange

\[\Gamma_{e^+e^-} = \frac{4\pi}{3} \alpha_{QED}^2 e^2 f_V^2 m_V \]

\[f_V m_V = \langle 0 | J | V \rangle \]

Good agreement with expt for all tastes as \(a \to 0 \)

Need to complete with conserved vector current
3. Compare charmonium correlators to perturbation theory - allows accurate determn m_c, α_s

J. Kühn talk QCD/Lattice

Small t correlators perturbative - take t moments

$$G_n = \sum_t (t/a)^n G(t)$$

$$\to \frac{\partial^n}{\partial E^n} \Pi(E = 0)$$

$$G_n = \frac{g_n(\alpha_{MS}(\mu), \mu/m_c)}{(am_c(\mu))^{n-4}}$$

lattice calcn. extrapolated to $a=0$

continuum pert. th. (4-loop for low n)

I. Allison et al, 0805.2999[hep-lat]
HPQCD + Karlsruhe/Brookhaven
+ new results here
Gives 1% accurate value for m_c

<table>
<thead>
<tr>
<th>$m_c(\mu)/\text{GeV}$</th>
<th>$j_5^{(5)}$</th>
<th>$j_5^{(5\mu)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_c(\mu)/\text{GeV}$</td>
<td>$j_\mu^{(\mu)}$</td>
<td>$j_\mu^{(1)}$</td>
</tr>
</tbody>
</table>

$\mu = 3\text{GeV}$

Best lattice result from pseudoscalar

$m_c(3\text{GeV}) = 0.986(10)\text{GeV} \quad m_c(m_c) = 1.267(9)\text{GeV}$

Contnm uses vector, $R(e^+e^-) = 0.986(13)\text{ GeV}$

4 different currents agree

Full error budget – biggest is determin of a

Published by Kühn et al
\(\alpha_s \) determination

\[\alpha_{MS}(M_Z) = 0.1174(12) \]

Reduced moments have less dependence

New superfine results

agrees with determn from Wilson loops (2008)

\[\alpha_{MS}(M_Z) = 0.1183(7) \]

Davies et al, 0807.1687

Give \(m_c \)
Conclusions

• We now have lattice results in charm physics with accuracy (2%) similar to that for light hadrons.
• D_s decay constant is the only result (from ~15 quantities) that disagrees with experiment.
• Further tests this year confirm confidence in the lattice calculation must take this seriously.

Future:

• Need significantly improved experimental error on f_{D_s} - currently 3x lattice error.
• Further lattice calculations in other formalisms needed.
• Similarly accurate semileptonic form factors for $D/D_s/K$ need to be calculated.
Error budgets

E. Follana et al,
HPQCD
0706.1726[hep-lat]

<table>
<thead>
<tr>
<th>Source</th>
<th>f_K/f_π</th>
<th>f_K</th>
<th>f_π</th>
<th>f_{Ds}/f_D</th>
<th>f_{Ds}</th>
<th>f_D</th>
<th>Δ_s/Δ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1 uncertainty</td>
<td>0.3</td>
<td>1.1</td>
<td>1.4</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>a^2 extrapol.</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>finite vol.</td>
<td>0.4</td>
<td>0.4</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$m_{u/d}$ extrapol.</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>stat. errors</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>m_s evoln.</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>m_d, QED etc</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Total %</td>
<td>0.6</td>
<td>1.3</td>
<td>1.7</td>
<td>0.9</td>
<td>1.3</td>
<td>1.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

$m_c(\mu)$

<table>
<thead>
<tr>
<th>Source</th>
<th>R_6</th>
<th>R_8</th>
<th>R_4</th>
<th>R_6/R_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^2 extrapolation</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>perturbation theory</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>α_{MS} uncertainty</td>
<td>0.3</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$m_c(\mu)$ uncertainty</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>gluon condensate</td>
<td>0.3</td>
<td>0.0</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>statistical errors</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>m_{0c} errors from r_1/a</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>m_{0c} errors from r_1</td>
<td>0.6</td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$m_{u/d}/s$ extrapolation</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>finite volume</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>$\mu \rightarrow M_Z$ evolution</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

Update of:
I. Allison et al,
0805.2999[hep-lat]
HPQCD + Karlsruhe/
Brookhaven