

Applications of Lattice QCD/Lattice field theory

Particle physics

Annual proceedings of lattice conference: http://pos.sissa.it/

Hadron spectrum
Hadron structure Nuclear physics

CKM elements
Glueballs and exotica

QCD at high temperatures

Theories beyond the Standard Model and densities

Quantum gravity
Astrophysics

Nuclear masses and properties

Lattice $\mathrm{QCD}=$ fully nonperturbative QCD calculation

RECIPE

- Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of u, d, s, (c) sea quarks)
- Calculate valence quark propagators
 to give "hadron correlators"
- Fit for masses and matrix elements
- Determine a and fix m_{q} to get results in physical units.
- extrapolate to $\quad a=0, m_{u, d}=p h y s$ for real world
- cost increases as $a \rightarrow 0, m_{l} \rightarrow$ phys and with statistics, volume.

Lattice QCD hadron physics

Lattice QCD at high temperature, density

Beyond QCD ..

Lattice quantum gravity
search for viable 'walking technicolour' theory

$\diamond 0^{--}$

- 0^{++}
supersymmetry on lattice large number of colours limit
$\frac{M}{\sqrt{\sigma}}$
try

Future (with increased computing power).. - lattices with physically light up and down quarks in the sea now becoming available - no chiral extrapolation!

- very fine lattices ($a<0.03 \mathrm{fm}$) allow b quarks to be treated relativistically rather than with effective theories
- large volumes (6 fm across) allow study of hadron resonances/multi-hadron states/small nuclei
- very high statistics give access to calculations with more intrinsic noise - flavour singlets, glueball spectrum etc
- finite temperature QCD calculations can be extended to different quark formalisms.
- the huge space of BSM theories can be explored
- not all progress requires improved computational resources but it helps!
- results for: LHC, BES, KEK, JLAB, DAFNE, RHIC, FAIR

European landscape - people

Many European countries active in lattice field theory*:

Europe provides $\sim 50 \%$ of
worldwide lattice community• of a few thousand.
70% of top-cited papers from heplat have some European authors^

\author{

- judged from attendance at the annual lattice QCD conference
}
${ }^{\wedge}$ from SPIRES, sampling years 2005-2010

European landscape - collaborations

Vary from international collaborations of ~ 20 people (e.g. Alpha, BMW, CLS, ETM, Hadron Spectrum, HotQCD, HPQCD, QCDSF, RBC-UKQCD, StrongBSM) to smaller groups. Sociologically tricky for theorists, but necessary for access to computing resources.

Significant fragmentation of European community around different discretisations of QCD Lagrangian. Good for diversity or inefficient?

Some success at bringing people together with EU networks - currently StrongNET and participation in III Hadronphysics 3. Flavianet spun out FLAG (lattice averaging group).

European landscape - computing

Europe has 7 of world's top 20 computers* with Pflops speed (32 of top 100 vs USA: 37 of top 100)
Lattice QCD has some access to these capability machines, but analysis phase needs large-scale capacity computing.
Hardware is provided nationally and piecemeal but PRACE provides important Europe-wide access

Curie
Fermi

BUT
fundamental physics not a top priority ... Lattice QCD not chosen as an application area for the
EXASCALE
DEEP project

International Lattice DataGrid
Global initiative allowing gluon field configurations to be made publically available for analysis.
BUT no resources available to run this ...

US DoE SciDAC initiative
Provides steady source of funds for computing hardware and people to develop publically available efficient parallel software for lattice calculations. Smaller European groups use this - would be good to contribute/have our own initiative BUT no resources for this ...

Lattice QCD pushes boundary of supercomputer "grand challenges" (and has led to hardware developments) so is a good technical training environment.

Conclusions

Europe must maintain a long-term world-leading programme in lattice gauge theory both as vital input for the experimental programme and for the leading-edge technology skills base.
This requires sustained investment in computing infrastructure, support and people. To be competitive, we need $10-20 \mathrm{M} €$ per year for dedicated hardware $+4 \mathrm{M} €$ per year for software/algorithm development across Europe. More coordination between researchers would help us argue for this investment and maximise the output from it in research, training and communication of results. We need mechanisms within Europe to encourage this to happen.

