Precision determination of the charm quark mass **Christine** Davies University of Glasgow OCD collaboration **CHARM2013**, August 2013

Lattice QCD works directly with the QCD Lagrangian. Can tune bare mass parameters very accurately using experimentally very well-determined hadron masses.

Conversion of lattice quark masses to \overline{MS} scheme

- Direct methods: Determine $m_{q,latt}$ in lattice QCD. $m_{\overline{MS}}(\mu) = Z(\mu a)m_{latt}$
- Calculate Z in lattice QCD pert. th. or use 'nonpert' lattice matching.
- Error dominated by that of Z and continuum extrapolation. Note: Z cancels in mass ratios.
- Indirect methods: (after tuning m_{latt}) match a quantity calculated in lattice QCD to continuum pert. th. in terms of \overline{MS} quark mass
- e.g. Current-current correlators for heavy quarks known through α_s^3 .

Chetyrkin et al, Maier et al

Issues with handling 'heavy' quarks on the lattice:

$$L_q = \overline{\psi}(D \!\!\!/ + m)\psi \to \overline{\psi}(\gamma \cdot \Delta + ma)\psi$$

 Δ is a finite difference on the lattice - leads to discretisation errors. What sets the scale for these? For light hadrons the scale is Λ_{QCD} = few hundred MeV For heavy hadrons the scale can be m_Q

$$E(a) = E(a = 0) \times (1 + A(m_Q a)^2 + B(m_Q a)^3 + \ldots)$$

 $m_c a \approx 0.4, m_b a \approx 2$ for $a \approx 0.1 \text{fm}$

 \rightarrow need good discretisation of Dirac equation and multiple values of α for accurate continuum extrapolation.

Highly Improved Staggered Quarks (HISQ) formalism has errors improved to $\alpha_s(am)^2$, $(am)^4$ Follana et al, HPQCD, hep-lat/0610092

Current-current correlator method for m_c

Current-current correlator method for lattice mc

HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285

- Substitute time-moment of lattice charmonium correlator for experiment. In principle can use any current J now.
- For HISQ quarks pseudoscalar η_c correlator is $\frac{\alpha_{now}}{\alpha_{now}}$ most accurate. J is absolutely normalised.

step 1: calculate η_c correlators by combining lattice charm quark 0.01 propagators 0.0001 ·+ ·+ ·+ ·+ ·+ ·+ ·+ ·+ ·+ ·+ ·+ ·+ ·+ step 2: large time - fit to orrelator(t) 1e-06 exponential, gives η_c mass 1e-08 step 3: tune lattice quark mass so 1e-10 η_c mass correct. 1e-12 step 4: calculate time moments to 1e-14 compare to QCD pert. theory. 5 15 10 200 Emphasises short-time contribus.

Correlator time-moments:

Saturday, 31 August 2013

extrapolate to a=0 and compare

$$\begin{aligned} R_{n,cont} &= \frac{m_{\eta_c}}{2m_c(\mu)} \frac{C_k^P}{C_k^{P,0}} & n = \\ \frac{C_k^P}{\alpha^{P,0}} &= 1 + \sum c_i \alpha_s^i(\mu) \end{aligned}$$

Fit first 4 moments simultaneously, gives

AND $\alpha_s(\mu)$ m_{η_c} $2m_c(\mu)$

Result:

 $m_c(m_c) = 1.273(6) \text{GeV}$

error dominated by unknown higher orders in pert. th. c. McNeile et al, HPQCD,1004.4285

Further check: compare vector moments (after normalising current) to those extracted from $R_{e^+e^-}$

Agreement is a 1% test of (lattice) QCD

G. Donald et al, HPQCD, 1208.2855

m_c/m_s

Mass ratio can be obtained directly from lattice QCD if same quark formalism is used for both quarks. Ratio is at same scale and for same n_f .

Not possible with $\left(\frac{m_{q1,latt}}{m_{q2,latt}}\right)_{a=0} = \frac{m_{q1,\overline{MS}}(\mu)}{m_{a2,\overline{MS}}(\mu)}$ any other method ... HIS atticeaverages.org End of 2011 1413 m_c/m_s BMW '10 HPOCD'10 Laiho & Van de Water '11 MILC '09 11 RBC/KEK/Nagoya '10 RBC/UKOCD '11 0.020 0.000 0.0050.010 0.015 a^2 (in fm²) 80 90 $m_{a}^{\overline{MS}(2 \text{ GeV})}$ (MeV) $\frac{m_c}{m_f} = 11.85(16)$ $n_f = 3$ 92.2(1.3) MeV m_s allows 1% accuracy in m_s C. Davies et al, HPQCD, 0910.3102

Current-current correlator method -HISQ HPQCD, 1004.4285

• Repeat calcln for $m_q \ge m_c$ inc. ultrafine lattices

m_b/m_c from lattice QCD

completely nonperturbative determination of ratio gives:

 $\frac{m_b}{m_c} = 4.49(4)$

Agrees with that from current-current correlator method - test of pert. th.

Ongoing work

Existing lattice QCD results include u, d, s sea quarks with u/d quark masses heavier than their real values.

NOW have gluon configurations including 2+1+1 flavours of sea quarks and u/d quark masses at their physical values.

Improved accuracy on ratio m_c/m_s on $n_f = 2+1+1$ configs with physical u/d quarks:

PDG compilation of results

Their evaluation: 1.275(25) GeV good agreement between most precise lattice and non-lattice results

NB new result from joint H1+ZEUS charm prodn cross-section: m_c=1.26(6) GeV arXiv;1211.1182

Conclusions

$\frac{m_c(m_c)}{m_b(m_b)}$ is determined to 1% and $\frac{m_b(m_b)}{m_b(m_b)}$ to 0.5% from continuum and lattice methods.

- Will be hard to improve m_c further directly.
- $\label{eq:mb} \bullet m_b \mbox{ can be improved from lattice QCD with finer lattices reducing/removing extrapolation to b.}$
- \bullet Then determine m_b/m_c ratio nonperturbatively to improve m_c
- \bullet Improved m_c will give improved m_s from 0.5% accurate m_c/m_s
- New lattice QCD determinations in progress using a variety of formalisms and now with u, d, s and c quarks in sea and physical u/d quarks. Watch this space ...

NOTE: errors are ~a factor of 3 better than Higgs WG assume

Error budget for HISQ current-current method 1004.4285

0.6%

$m_{c}(3)$ m_b/m_c $\alpha_{\overline{\mathrm{MS}}}(M_Z)$ $m_b(10)$ a^2 extrapolation 0.2% 0.2% 0.6% 0.5% Perturbation theory 0.5 0.1 0.5 0.4 Statistical errors 0.1 0.2 0.3 0.3 m_h extrapolation 0.1 0.1 0.2 0.0 Errors in r_1 0.2 0.1 0.1 0.1 Errors in r_1/a 0.1 0.3 0.2 0.1 Errors in m_{η_c}, m_{η_b} 0.2 0.1 0.2 0.0 α_0 prior 0.1 0.1 0.1 0.1 Gluon condensate 0.0 0.0 0.2

0.7%

0.0

0.8%

0.6%

Total