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Quark masses are 
fundamental parameters of 
the SM but cannot be directly 
determined from experiment. 
Well-defined masses are scheme 
and scale-dependent.
Convention to useMS

Masses are input to theoretical expressions for SM cross-
sections e.g.                  (but Higgs WG inflate errors -why?)

CDF

/27Paul Mackenzie,  USQCD.

Treatment of parametric uncertainties in Higgs physics

24

Table 1: Input parameters and their relative uncertainties, as used for the uncertainty estimation of the branching
ratios. The masses of the central values correspond to the 1-loop pole masses, while the last column contains the
correspondingMS mass values.

Parameter Central value Uncertainty MS massesmq(mq)

αs(MZ) 0.119 ±0.002

mc 1.42 GeV ±0.03 GeV 1.28 GeV
mb 4.49 GeV ±0.06 GeV 4.16 GeV
mt 172.5 GeV ±2.5 GeV 165.4 GeV

Given the uncertainties in the parameters, the parametric uncertainties have been determined as
follows. For each parameter p = αs,mc,mb,mt we have calculated the Higgs branching ratios for p,
p +∆p and p −∆p, while all other parameters have been left at their central values. The error on each
branching ratio has then been determined by

∆p
+BR = max{BR(p+∆p),BR(p),BR(p−∆p)}− BR(p),

∆p
−BR = BR(p)−min{BR(p+∆p),BR(p),BR(p−∆p)}. (3)

Note that this definition leads to asymmetric errors. The total parametric errors have been obtained by
adding the parametric errors from the four parameter variations in quadrature. This procedure ensures
that the branching ratios add up to unity for all parameter variations individually.

The uncertainties of the partial and total decay widths have been obtained in an analogous way,

∆p
+Γ = max{Γ(p+∆p),Γ(p),Γ(p −∆p)}− Γ(p),

∆p
−Γ = Γ(p)−min{Γ(p +∆p),Γ(p),Γ(p −∆p)}, (4)

where Γ denotes the partial decay width for each considered decay channel or the total width, respec-
tively. The total parametric errors have been derived by adding the individual parametric errors in quadra-
ture.

2.1.3.2 Theoretical uncertainties
The second type of uncertainty for the Higgs branching ratios results from approximations in the theoret-
ical calculations, the dominant effects being due to missing higher orders. Since the decay widths have
been calculated with HDECAY and PROPHECY4F the missing contributions in these codes are relevant.
For QCD corrections the uncertainties have been estimated by the scale dependence of the widths result-
ing from a variation of the scale up and down by a factor 2 or from the size of known omitted corrections.
For electroweak corrections the missing higher orders have been estimated based on the known struc-
ture and size of the NLO corrections. For cases where HDECAY takes into account the known NLO
corrections only approximatively the accuracy of these approximations has been used. The estimated
relative theoretical uncertainties for the partial widths resulting from missing higher-order corrections
are summarised in Table 2. The corresponding uncertainty for the total width is obtained by adding the
uncertainties for the partial widths linearly.

Specifically, the uncertainties of the partial widths calculated with HDECAY are obtained as
follows: For the decays H → bb, cc, HDECAY includes the complete massless QCD corrections up
to and including NNNNLO, with a corresponding scale dependence of about 0.1% [38–45]. The NLO
electroweak corrections [46–49] are included in the approximation for small Higgs masses [50] which
has an accuracy of about 1−2% forMH < 135 GeV. The same applies to the electroweak corrections to
H → !+!−. For Higgs decays into top quarks HDECAY includes the complete NLO QCD corrections
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Current discussions of Higgs branching fractions and partial widths use very conservative 
estimates  of parametric precisions.

Higgs X-
Section WG PDG lattice

Karlsruhe
(e+e-) 

world 
non-lattice

! !s 0.002 0.0007 0.0007 0.0012

! mc (GeV) 0.03 0.025 0.006 0.013

! mb (GeV) 0.06 0.03 0.023 0.016

Should interpret as 1 " errors.

Level of conservatism in assumed uncertainties that is appropriate depends on 
circumstances, e.g., on whether you’re discussing with a postdoc where something 
funny might be going on or whether you’re discussing with the New York Times.

P. 
Mackenzie, 
Snowmass 
2013

Compare results from multiple approaches for strong test 
of QCD.

H → cc
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Lattice QCD works directly with the QCD Lagrangian. 
Can tune bare mass parameters very accurately using 
experimentally very well-determined hadron masses. 

R. Dowdall 
et al, 
HPQCD,
1207.5149
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Conversion of  lattice quark masses to            schemeMS
• Direct methods: Determine                 in lattice QCD. mq,latt

Calculate Z in lattice QCD pert. th. or use ‘nonpert’ lattice 
matching. 
Error dominated by that of Z and continuum extrapolation.
Note: Z cancels in mass ratios.

• Indirect methods: (after tuning           ) match a quantity 
calculated in lattice QCD to continuum pert. th. in terms 
of         quark mass

J J

 Chetyrkin et al, Maier et al

mMS(µ) = Z(µa)mlatt

e.g. Current-current correlators for 
heavy quarks known through       .

mlatt

MS

α3
s
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Highly Improved Staggered Quarks (HISQ) formalism has 
errors improved to

Issues with handling ‘heavy’ quarks on the lattice: 

Lq = ψ(D/ + m)ψ → ψ(γ · ∆ + ma)ψ

∆       is a finite difference on the lattice - leads to 
discretisation errors. What sets the scale for these? 
For light hadrons the scale is               = few hundred MeVΛQCD

For heavy hadrons the scale can be  mQ

mca ≈ 0.4, mba ≈ 2 for

         need good discretisation of Dirac equation and 
multiple values of      for accurate continuum extrapolation. 

αs(am)2, (am)4 Follana et al, HPQCD, 
hep-lat/0610092

a ≈ 0.1fm

E(a) = E(a = 0)× (1 +A(mQa)
2 +B(mQa)

3 + . . .)

a
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Continuum: extract charm piece of: 

J/! ! ,
!  BES (2001)
"  MD-1
#  CLEO
$  BES (2006)pQCD
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition
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Current-current correlator method for mc

from experiment, then

J J

    a power series in             , known through         for first few values of k

e.g. Kuhn et al, 
hep-ph/0702103

vector 
coupling 
to photon

αs(µ) α3
s

c

c

Chetyrkin et 
al, 0907.2110

mc(mc) = 1.279(13)GeVUse k=1:
errors: expt + 

Πc(q
2) =

3

16π2
e2c
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Current-current correlator method for lattice mc
 HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285 

• Substitute time-moment of lattice 
charmonium correlator for experiment. In 
principle can use any current J now. 

J J
any
current 
now

JPC

• For HISQ quarks pseudoscalar         correlator is 
most accurate. J is absolutely normalised. 

ηc

step 1: calculate         correlators 
by combining lattice charm quark 
propagators
step 2: large time - fit to 
exponential, gives       mass
step 3: tune lattice quark mass so               
     mass correct. 
step 4: calculate time moments to 
compare to QCD pert. theory. 
Emphasises short-time contribns. 
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G(t) = a6
�

�x

(amc)2 < 0|j5(�x, t)j5(0, 0)|0 >

Gn =
�

t

(t/a)nG(t)

Rn,latt = G4/G(0)
4 n = 4

=
amηc

2amc
(Gn/G(0)

n )1/(n−4) n = 6, 8, 10 . . .

Correlator time-moments:

(match k = 2, 3, 4 ...)

unknown perturbative coefficients [Eq. (21)] is twice
as wide as suggested by our simulation results (using
the empirical Bayes criterion [19]); we choose the
larger width to be conservative.

(ii) Include more/fewer finite-a corrections: We set
Nam ¼ 30 for our results above. Using Nam ¼ 15
gives results that differ by less than 0:5! for mb

and much less for the other quantities. Much larger
Nam’s can be tested easily using the trick described
in Sec. III B 2. For example, replacing Rlatt

n by !Rlatt
n

[Eq. (18)] with Nam ¼ 80 and !Nam ¼ 30 gives re-
sults that are essentially identical to those above. As
discussed above, taking !Nam ¼ 0 with the same Nam

also gives the same results and is 22 times faster (see
the Appendix for further discussion).

(iii) Change n dependence of finite-a corrections:
Replacing the n-dependent prior for the expansion
coefficients [Eq. (17)] by the n-independent prior
0" 0:5 causes changes that are less than 0:3!. The
width of the original prior is optimal according to the
empirical Bayes criterion—that is, it is the width
suggested by the size of finite-a deviations observed
in our simulation data.

(iv) Add more/fewer "=m"h terms in z: Increasing the
number of terms in the expansion for z from Nz ¼ 4
to 6 changes nothing by more than 0:1!. Decreasing
to Nz ¼ 3 also has no effect. Again the width of the
prior is optimal according to the empirical Bayes
criterion.

(v) Include more/fewer moments: Keeping all moments
4 # n # 18 changes nothing by more than 0:5! and
reduces errors slightly for everything other than mb,
where the errors are cut almost in half: mbð10Þ ¼
3:623ð15Þ GeV or mbðmbÞ ¼ 4:170ð13Þ GeV, both
for nf ¼ 5. We continue to restrict ourselves to mo-
ments with n # 10 because these are the only mo-
ments for which we have exact third-order
perturbation theory. Keeping just n ¼ 4, 6 gives al-

most identical results for mc and #MS, with almost
the same errors, but doubles the error on mb.

(vi) Omit simulation data: The coarsest two lattice spac-
ings (configuration sets 1–5) affect our results only
weakly. Leaving these out shifts no result by more
than 0:5! and leaves errors almost unchanged.
Leaving out the smallest lattice spacing, however,
increases errors significantly (almost double for
#MS), while still shifting central values by less than
0:5!.

(vii) Add large masses: Including cases with am"h
> 1:95

from Table II leads to poor fits. The excluded data,
however, do not deviate far from the best-fit lines.
For example, the points marked with an & in Fig. 1
are for the largest mass we studied, corresponding to
m"h

¼ 9:15 GeV (last line in Table II). Although
am"h

is too large for this case to be included in our
fit, the values of Rn=rn are only slightly below the fit
results.

V. NONPERTURBATIVE mb=mc

It is possible to extract the ratio of quark masses mb=mc

directly, without using the moments and without using
perturbation theory. This provides an excellent nonpertur-
bative check on our results from the moments.
Ratios of quark masses are UV cutoff independent and

therefore the ratio of MS masses

mbð$; nfÞ
mcð$; nfÞ

¼ m0b

m0c
þOð#sa

2m2
bÞ (39)

for any $ and nf, where m0b and m0c are the bare quark
masses in the lattice quark action that give correct masses
for the "c and "b, respectively. We obtain accurate mass
ratios from this relationship by extrapolating to a ¼ 0. We
used such a method recently to determine mc=ms [11].
Here we have to modify our earlier method slightly

because we cannot reach the b-quark mass directly, but
rather must simultaneously extrapolate to the b mass and
the continuum limit. This is most simply done by deter-
mining the functional dependence of the ratio

wðm"h
; aÞ ( 2m0h

m"h

(40)

on the "h mass and the lattice spacing. The ratio of MS
masses is then given by the experimental masses of the "c

and "b and the equation:

mbð$; nfÞ
mcð$; nfÞ

¼ mexp
"b wðmexp

"b ; 0Þ
mexp

"c wðmexp
"c ; 0Þ

: (41)

It might seem simpler to fit m0h directly, rather than the
ratio w; but using w significantly reduces the m"h

depen-
dence (and therefore our extrapolation errors), and also

FIG. 3 (color online). Lattice-spacing dependence of Rn for
masses m"h

within 5% of m"c
and moments n ¼ 4, 6, 8, and 10.

The dashed lines show our fit for the average of these masses,
and the points at a ¼ 0 are the continuum extrapolations of our
data.

HIGH-PRECISION c AND b MASSES, AND QCD . . . PHYSICAL REVIEW D 82, 034512 (2010)

034512-9

ratio to results with no gluon 
field improves disc. errors

extrapolate to a=0 and compare 
to contnm pert. th.

J J

t

Rn,cont =
mηc

2mc(µ)

CP
k

CP,0
k

CP
k

CP,0
K

= 1 +
�

ciα
i
s(µ)

n =
2k + 2
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Fit first 4 moments 
simultaneously, gives                 

mηc

2mc(µ)
αs(µ)

Result: 
mc(mc) = 1.273(6)GeV
error dominated by unknown 
higher orders in pert. th. 

Further check: 
compare vector moments 
(after normalising current) 
to those extracted fromRe+e−

7

Set mca
�

GV
4

Z2a2

�1/2 �
GV

6
Z2a4

�1/4 �
GV

8
Z2a6

�1/6 �
GV

10
Z2a8

�1/8

1 0.622 0.5399(1) 1.2162(1) 1.7732(1) 2.2780(1)
2 0.63 0.5339(1) 1.2054(1) 1.7581(1) 2.2584(1)
2 0.66 0.5135(1) 1.1692(1) 1.7081(1) 2.1941(1)
3 0.617 0.5434(1) 1.2223(1) 1.7817(1) 2.2888(1)
4 0.413 0.7586(1) 1.6351(1) 2.3887(2) 3.0952(2)
5 0.273 1.0681(1) 2.2705(2) 3.3454(3) 4.3601(4)
6 0.193 1.4323(3) 3.0397(5) 4.4990(7) 5.8738(8)

TABLE IV: Results in lattice units for time moments of the
J/ψ correlator as defined in eq. (10). We give results for n=4,
6, 8 and 10.

(GV
4 )1/2 (GV

6 )1/4 (GV
8 )1/6 (GV

10)
1/8

(amc)
2 extrapolation 0.18 0.18 0.16 0.16

statistics 0.05 0.04 0.03 0.03
lattice spacing 0.32 0.51 0.43 0.30
sea quark extrapolation 0.14 0.13 0.12 0.12
Mηc tuning 0.15 0.18 0.17 0.16
Z 1.23 0.61 0.41 0.31
electromagnetism 0.3 0.2 0.1 0.05
Total (%) 1.3 0.9 0.7 0.5

TABLE V: Complete error budget for the time moments of
the J/ψ correlator as a percentage of the final answer.

Re+e− = σ(e+e− → hadrons)/σpt [22, 23]. The values,
extracted from experiment by [22] and appropriately nor-
malised for the comparison to ours, are:

(M exp
1 4!/(12π2e2c))

1/2 = 0.3142(22)GeV−1

(M exp
2 6!/(12π2e2c))

1/4 = 0.6727(30)GeV−1

(M exp
3 8!/(12π2e2c))

1/6 = 1.0008(34)GeV−1

(M exp
4 10!/(12π2e2c))

1/8 = 1.3088(35)GeV−1. (12)

Our results from lattice QCD have approximately double
the error of the experimental values but together these
results provide a further test of QCD to better than 1.5%.

C. Γ(J/ψ → γηc)

The radiative decay of the J/ψ meson to the ηc re-
quires the emission of a photon from either the charm
quark or antiquark and a spin-flip, so it is an M1 transi-
tion. Because it is sensitive to relativistic corrections this
rate is hard to predict in nonrelativistic effective theories
and potential models (see, for example, [24, 25]) Here
we use a fully relativistic method in lattice QCD with
a nonperturbatively determined current renormalisation
and so none of these issues apply. In addition, of course,
the lattice QCD result is free from model-dependence.
The quantity that parameterises the nonperturbative

QCD information (akin to the decay constant of the pre-
vious section) is the vector form factor, V (q2), where q2

is the square of the 4-momentum transfer from J/ψ to
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FIG. 4: Results for the 4th, 6th, 8th and 10th time moments
of the charmonium vector correlator shown as blue points and
plotted as a function of lattice spacing. The errors shown (the
same size or smaller than the points) include (and are domi-
nated by) uncertainties from the determination of the current
renormalization factor, Z, that are correlated between the
points. The data points have been corrected for c quark mass
mistuning and sea quark mass effects, but the corrections are
smaller than the error bars (the value for the deliberately
mistuned c mass on set 2 is not shown). The blue dashed
line with grey error band displays our continuum/chiral fit.
Experimental results determined from Re+e− (eq. (12)) are
plotted as the black points at the origin offset slightly from
the y-axis for clarity.

ηc. The form factor is related to the matrix element of
the vector current between the two mesons by:

�ηc(p�)|cγµc|J/ψ(p)� = 2V (q2)

(MJ/ψ +Mηc)
εµαβγp�αpβ�J/ψ,γ

(13)
Note that the right-hand-side vanishes unless all the vec-
tors are in different directions. Here we use a normalisa-
tion for V (q2) appropriate to a lattice QCD calculation
in which the vector current is inserted in one c quark line
only and the quark electric charge (2e/3) is taken as a
separate factor. The decay rate is then given by [8]:

Γ(J/ψ → ηcγ) = αQED
64|�q|3

27(Mηc +MJ/ψ)2
|V (0)|2, (14)

where it is the form factor at q2 = 0 that contributes be-
cause the real photon is massless. |�q| is the corresponding
momentum of the ηc in the J/ψ rest-frame.

C. McNeile et al, HPQCD,1004.4285 

G. Donald et al, HPQCD, 1208.2855 

expt

AND

Agreement is a 1% 
test of (lattice ) QCD

lattice and expt errors similar size
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mc/ms

Mass ratio can be obtained directly from lattice QCD if 
same quark formalism is used for both quarks. Ratio is at 
same scale and for same nf.

�
mq1,latt

mq2,latt

�

a=0

=
mq1,MS(µ)
mq2,MS(µ)

3

0.000 0.005 0.010 0.015 0.020
a2 (in fm2)

11

12

13

14

m
c
/m

s

FIG. 1: Grey points show the raw data for every ratio of
mc/ms on each ensemble (Table II); these ratios are fit to
eq. 4. The dashed line and associated grey error band (and red
point at a = 0) show our extrapolation of the resulting tuned
mc/ms to the continuum limit. Blue points with error bars
are from a simple interpolation, separately for each ensemble,
to the correct mc/ms, and are shown for illustration.

semble by ensemble basis this is taken from a parameter
in the heavy quark potential called r1. Values for r1/a
determined by the MILC collaboration [14] are given in
Table I. They have errors of 0.3-0.5%. The physical value
for r1 must then be obtained by comparing to experimen-
tally known quantities and we use the value 0.3133(23)
fm obtained from a set of four such quantities, tested for
consistency in the continuum limit [18, 19].

Using the information about meson masses that we
have on each ensemble we can interpolate to the cor-
rect ratio for am0c and am0s using appropriate contin-
uum values for the masses of the ηc and ηs. We cor-
rect the experimental value of mηc of 2.9803 GeV to
mηc,phys = 2.9852(34) GeV. This allows for electromag-
netic effects (2.4 MeV) [18] and ηc annihilation to gluons
(2.5MeV) [11], both of which are missing from our calcu-
lation, so increasing the ηc mass. We take a 50% error on
each of these corrections and also increase the experimen-
tal error to 3 MeV to allow for the spread of results from
different ηc production mechanisms [1]. Since the total
shift is only around 0.2% of the ηc mass it has a negligible
effect as can be seen from our error budget below.

The ηs is not a physical particle in the real world be-
cause of mixing with other flavor neutral combinations to
make the η and η�. However, in lattice QCD, the particle
calculated (as here) from only ‘connected’ quark propag-
tors does not mix and is a well-defined meson. Its mass
must be determined by relating its properties to those
of mesons such as the π and K that do appear in ex-
periment. From an analysis of the lattice spacing and
ml-dependence of the π, K, and ηs masses we conclude
that the value of the ηs mass in the continuum and phys-
ical ml limits is 0.6858(40) GeV [18].

The connection between the MS mass at a scale µ and

the lattice bare quark mass is given by [10, 20]:

m(µ) =
am0

a
Zm(µa,m0a), (2)

Zm = 1 + αs(−
2

π
log(µa) + C + b(am0)

2 + . . .) + . . . .

From these two equations it is clear that

mc(µ)

ms(µ)
=

am0c

am0s

����
phys

, (3)

where phys denotes extrapolation to the continuum limit
and physical sea quark mass limit.
On each ensemble the ratios we have for am0c/am0s

then differ from the physical value because of three ef-
fects: mistuning from the correct physical meson mass;
finite a effects that need to be extrapolated away and ef-
fects because the sea light quark masses are not correct.
We incorporate these into our fitting function:

m0c

m0s

����
lat

=
m0c

m0s

����
phys

×
�
1 + dsea

δmsea
tot

ms

�
(4)

×



1 +
�

i,j,k,l

cijkl δ
i
c δ

j
s

�amηc

2

�2k
(amηs)

2l



 .

δc =
mηc,MC −mηc,phys

mηc,phys
; δs =

m2
ηs,MC −m2

ηs,phys

m2
ηs,phys

(5)

are the measures of mistuning, where MC denotes lattice
values converted to physical units. The last bracket fits
the finite lattice spacing effects as a power series in even
powers of a. These can either have a scale set by mc

(for which we use amηc/2) or by ΛQCD (for which we use
amηs). i, j, k, l all start from zero and are varied in the
ranges: i, j ≤ 3, k ≤ 6, l ≤ 2 with i + j + k + l ≤ 6.
Doubling any of the upper limits has negligible effect on
the final result. The prior on cijkl is set to 0(1). δmsea

tot

is the total difference between the sea-quark masses used
in the simulation and the correct value for 2ml+ms [18].
This has a tiny effect and we simply use a linear term
(adding higher orders has negligible effect). The prior for
dsea is 0.0(1). Figure 1 shows the results of the fit, giving
mc/ms in the continuum limit as 11.85(16) (χ2/dof =
0.42). The error budget is given in Table III.
ms/ml is known to 1% from lattice QCD as a byprod-

uct of standard chiral extrapolations of m2
π and m2

K to
the physical point [21]. MILC quote 27.2(3) using asq-
tad quarks [14]. Our HISQ analysis in [12] gave a re-
sult in agreement at 27.8(3), using a Bayesian fit to a
function including terms from chiral perturbation theory
up to third order in ml and allowing for discretisation
errors up to and including a4 and for mixed terms (i.e
ml-dependent discretisation errors). A full error budget
is given in Table III; the data are given in [18].

mc

ms
= 11.85(16)

 C. Davies et al,HPQCD, 0910.3102

nf = 3

Not possible with 
any other method ...

HISQ

allows 1% accuracy in ms 
92.2(1.3) MeV
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Current-current correlator method -HISQ  HPQCD, 
1004.4285

• Repeat calcln for                     inc. ultrafine lattices
7

upon Bayesian ideas [17]. In this procedure we minimize
an augmented χ2 function of the form

χ2 =
�

in,jm

∆Rni (σ−2
R )in,jm ∆Rmj +

�

ξ

δχ2
ξ (32)

where:

∆Rni ≡ Rlatt
ni −Rn(µi, mηhi, ai, Nam); (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28) and (30); fit function Rn(. . .) is defined
by Eq. (15); and σ2

R is the error covariance matrix for
the Rlatt

n . The sums i, j are over the 22 sets of lattice
spacings and quark masses; the sums n, m range over of
the moments 4, 6, 8, 10.

Function Rn(µi, mηhi, ai, Nam) depends upon a large
number of parameters, all of which are varied in the fit
to minimize χ2. Priors δχ2

ξ are included for each of these:

• parameters zj , with prior Eq. (13), from the 1/mηh

expansion of z(µ/mh, mηh);

• parameters c(n)
ij , with prior Eq. (17), from the

finite-lattice spacing corrections;

• unknown perturbative coefficients rnj , with prior
Eq. (21) (evolved to µ/mh =3);

• coupling parameter log(α0), with prior Eq. (22);

• β4 in the QCD β-function, with prior Eq. (25);

• lattice spacings ai for each gluon configuration set,
with priors specified by simulation results for r1/a
(Table I) and the current value for r1 (Eq. (10));

• values for amηhi, with priors specified by our sim-
ulation results (Table II).

The renormalization scales µi are obtained from the ratio
µ/mh = 3, simulation results for mηh , and Eq. (7). We
take Nam =30 for our final results.

B. Results

We fit our simulation data for the reduced mo-
ments Rlatt

n (Table II) using fit function Rn(. . .)
(Eq. (15)) with Nam = 30, as discussed in the previous
section. The best-fit values for parameters zj give us the
mass-ratio function z(µ/mh = 3, mηh) (Eq. (7)), which
we plot in Figure 1. We also show our simulation re-
sults there for Rlatt

n /rn, together with the best-fit lines
for each lattice spacing. Results are shown for the three
moments that depend upon z, 5 different lattice spac-
ings, and quark masses ranging from below the c mass
almost to the b mass. The simulation data were all fit
simultaneously, using the same functions z(3, mηh) and
αMS(µ) (with µ = 3mηh/(2z)) for all moments. The fits
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h
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R6/r6

µ = 3mh(µ)

FIG. 1: Function z(µ/mh = 3, mηh)≡mηh/(2mh) as a func-
tion of mηh . The solid line, plus gray error envelope, shows
the a = 0 extrapolation obtained from our fit. This is com-
pared with simulation results for Rn/rn for n = 6, 8, 10 from
our 5 different lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend further to the right.
The points marked by an “x” are for the largest mass we
tried (last line in Table II); these are not included in the fit
because amηh is too large. Finite-a errors become very small
for the larger-n moments, causing points from different lattice
spacings to overlap.

are excellent, with χ2/88 = 0.19 for the 88 data pieces of
simulation data we fit.

Evaluated at mηc = 2.985(3) GeV [24], the mass-
ratio function is z(3, mηc) = 1.507(7). Combining this
with Eq. (9) and perturbation theory, we can obtain the
following results for the MS c-quark mass at different
scales:

mc(3mc, nf = 3) = 0.991(5) GeV, (34)
mc(3 GeV, nf = 4) = 0.986(6) GeV,

mc(mc, nf = 4) = 1.273(6) GeV.

Similarly at mηb = 9.395(5) GeV [25], the mass-ratio
function is z(3, mηb)=1.296(8), and we obtain the follow-
ing results for the MS b-quark mass at different scales:

mb(3mb, nf = 3) = 3.623(22) GeV. (35)
mb(10 GeV, nf = 5) = 3.618(25) GeV,

mb(mb, nf = 5) = 4.165(23) GeV.
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FIG. 5: Updated values for the 5-flavor αMS at the Z-meson
mass from each of 22 different short-distance quantities built
from Wilson loops. The gray band indicates a composite av-
erage, 0.1184(6). χ2 per data point is 0.3.

VII. CONCLUSIONS

In this paper, we improve significantly on our previous
determinations of the QCD coupling and c-quark mass
from heavy-quark correlators. This is principally due to
the inclusion of a new, smaller lattice spacing in our anal-
ysis. We also generated results for a variety of quark
masses near mc, allowing us to interpolate more accu-
rately to the physical value of mc. New third-order per-
turbation theory makes R10 as useful now as R4, R6, and
R8 were in the earlier paper. Finally, in this paper, we
fit multiple moments simultaneously, determining con-
sistent values simultaneously for both the QCD coupling
and the quark masses for all moments. Previously we ex-
amined each moment or ratio of moments independently,
extracting mcs or αMSs independently of each other. Our

3 4 5 6 7 8 9
mηh
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)) µ =
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mh/2

FIG. 6: z(µ/mh, mηh) versus mηh for three different values
of µ/mh. The curve for µ = 3mh comes from the best fit
to the moments. The other curves are obtained by evolving
perturbatively from µ=3mh.
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FIG. 7: Simulation results for reduced moments Rn with n=
6, 8, 10 as functions of mηh for 5 different lattice spacings.
The dashed lines show the corresponding behavior of our fit
function, with the best-fit parameters. The curves for smaller
lattice spacings extend further to the right. The solid lines
show the a=0 limit of our best fit.

new results,

mc(3 GeV, nf = 4) = 0.986(6) GeV (47)
αMS(MZ , nf = 5) = 0.1183(7),

agree well with our older results of 0.986(10) GeV and
0.1174(12), respectively [1].

The much heavier b quark is usually analyzed using ef-
fective field theories like NRQCD or the static-quark ap-
proximation. By using very small lattice spacings and the
very highly improved HISQ discretization for the heavy
quarks, we are able to extend our analysis almost to the
b-quark mass, using the same relativistic discretization
that we use for c and lighter quarks. A 1.5% extrapo-
lation of z(3, mh), from the largest mηh used in our fits
to mηb , gives us a new, accurate determination of the
b-quark mass,

mb(10 GeV, nf = 5) = 3.618(25) GeV. (48)

Can determine                  for 
heavy quarks - extrapolate 
(slightly) to b.

b

mq ≥ mc

c
mh/mηh

Agrees well with contnm 
results using
             

Re+e−

m
nf=5
b (mb) = 4.164(23)GeV

key error is now extrapoln in a
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mb/mc from lattice QCD
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the ηc and ηb and the equation:

mb(µ, nf )
mc(µ, nf )

=
mexp

ηb
w(mexp

ηb
, 0)

mexp
ηc w(mexp

ηc , 0)
. (41)

It might seem simpler to fit m0h directly, rather than
the ratio w; but using w significantly reduces the mηh

dependence (and therefore our extrapolation errors), and
also makes our results quite insensitive to uncertainties
in our values for the lattice spacing.

We parameterize function w with an expansion mod-
eled after the one we used to fit the moments:

w(mηh ,a) = Zm(a)

�
1 +

Nw�

n=1

wn

�
2Λ
mηh

�n
�

/ (42)



1 +
Nam�

i=1

Nw�

j=0

cij

�amηh

2

�2i
�

2Λ
mηh

�j


 ,

where, as for the moments,

i + j ≤ max(Nam, Nw). (43)

Coefficients cij and wn are determined by fitting function
w(mηh , a) to the values of 2am0h/(amηh) from Table II.
The fit also determines the parameters Zm(a), one for
each lattice spacing, which account for the running of
the bare quark masses between different lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the ηh is nonrelativistic [8], and the
variation with mηh stronger (twice that of z(µ/mh =
3, mηh)). So here we use priors

cij = 0± 0.05 (44)
wn = 0± 4

Zm(a) = 1± 0.5

with Nw =8. We again take Nam =30, although identical
results are obtained with Nam = 15.

Our fit results are illustrated by Figure 4 which plots
the ratio m0h/mηh divided by m0c/mηc for a range of
ηh masses. Our data for different lattice spacings is com-
pared with our fit, and with the a = 0 limit of our fit
(solid line). The fit is excellent, with χ2/22 = 0.42 for
the 22 pieces of data we fit (we again exclude cases with
amηh > 1.95). Using the ηc and ηb masses from Sec-
tion IVB, and Eq. (41) with the best-fit values for the
parameters, we obtain finally

m0b

m0c
→ 4.49(4) as a→0 (45)

=
mb(µ, nf )
mc(µ, nf )

,

which agrees well with our result from the moments
(Eq. (36)).
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FIG. 4: Ratio m0h/mηh divided by m0c/mηc (which we ap-
proximate by w(mηc , a)/2 from our fit) as a function of mηh .
The solid line shows the a=0 extrapolation obtained from our
fit. This is compared with simulation results for our 4 small-
est lattice spacings, together with the best fits (dashed lines)
corresponding to those lattice spacings. The point marked by
an “x” is for the largest mass we tried (last line in Table II);
this was not included in the fit because amηh is too large.

VI. αMS FROM WILSON LOOPS

In a recent paper [26], we presented a very accurate
determination of the QCD coupling from simulation re-
sults for Wilson loops. Here we want to compare those
results to the value we obtain from heavy-quark corre-
lators. First, however, we must update our earlier anal-
ysis to take account of the new value for r1 [10] given
in Eq. (10) and improved values for r1/a [13] given in Ta-
ble I. (The Wilson-loop paper uses some additional con-
figuration sets: from Table II in that paper, sets 1, 6, 9,
and 11 whose new r1/as are 1.813(8), 2.644(3), 5.281(8)
and 5.283(8), respectively.) We have rerun our earlier
analysis, updating r1, r1/a, and the c and b masses. The
results are shown in Figure 5. Combining results as in the
earlier paper we obtain a final value from the Wilson-loop
quantities of

αMS(MZ , nf = 5) = 0.1184(6), (46)

with χ2/22 = 0.3 for the 22 quantities in the figure.
This agrees very well with the result in the earlier pa-
per, αMS(MZ) = 0.1183(8), but has a slightly smaller
error, as expected given the smaller error in r1. This
new value also agrees well with our very different de-
termination from heavy-quark correlators (Eq. (38)). A
breakdown of the error into its different sources can be
found in Table IV of [26] (reduce the r1 and r1/a errors
in that table by half to account for the improved values
used here).

completely nonperturbative determination of ratio gives: 
mb

mc
= 4.49(4)

Agrees with that from current-current correlator 
method - test of pert. th. 

�
mq1,latt

mq2,latt

�

a=0

=
mq1,MS(µ)

mq2,MS(µ)
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Ongoing work
Existing lattice QCD results include u, d, s sea quarks with 
u/d quark masses heavier than their real values.
NOW have gluon configurations including 2+1+1 flavours 
of sea quarks and u/d quark masses at their physical values. 

HPQCD preliminary 
results (HISQ 
quarks) show very 
little effect of c in 
sea (as expected) 

ETMC also working 
on mc with 2+1+1 
quarks in sea. 
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Improved accuracy on ratio mc/ms on nf = 2+1+1 configs 
with physical u/d quarks:

MILC/Fermilab
result@LAT13

mc

ms
= 11.75(6)

will allow 
improved ms 
from improved 
mc determination
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prodn cross-section:
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Conclusions
                 is determined to 1% and 
                 to 0.5% from continuum and lattice methods.

• Will be hard to improve mc further directly.
• mb can be improved from lattice QCD with finer 
lattices reducing/removing extrapolation to b.
• Then determine mb/mc ratio nonperturbatively to 
improve mc

New lattice QCD determinations in progress using a 
variety of formalisms and now with u, d, s and c quarks 
in sea and physical u/d quarks. Watch this space ...

mc(mc)
mb(mb)

• Improved mc will give improved ms from 0.5% 
accurate mc/ms   

NOTE: errors are ~a factor of 3 better than Higgs WG assume
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Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS
extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
Errors in r1=a 0.1 0.3 0.2 0.1
Errors in m#c

, m#b
0.2 0.1 0.2 0.0

"0 prior 0.1 0.1 0.1 0.1
Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%

MCNEILE et al. PHYSICAL REVIEW D 82, 034512 (2010)

034512-8

Error budget for HISQ current-current method
1004.4285
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