Lattice NRQCD	Fitting		Current & Future Work	Summary
00 000		00000		

NRQCD Studies of the Υ Spectrum

Brian Colquhoun

Young Theorists' Forum 2012

19 December 2012

Introduction	Lattice NRQCD	Fitting		Current & Future Work	Summary
0	00 000		00000 00		
NRQCD					

Nonrelativistic QCD

Nonrelativistic QCD (NRQCD) is useful for heavy quarks on the lattice, so the Υ spectrum (that is, $b\bar{b}$, or bottomonium, states) can be studied effectively. To this end I will talk about the pseudoscalar (η_b) and vector (Υ) states.

NRQCD uses an expansion of powers of v^2 .

It is matched to full QCD and can subsequently be used wherever there is a b quark.

This talk is largely based on HPQCD paper, R. Dowdall et al., Phys. Rev. **D85**, 054509 (2012), 1110.6887.

• • = • •

Introduction	Lattice NRQCD	Fitting		Current & Future Work	Summary
0	00 000		00000 00		
Motivation					

Motivation

Heavy quarks can now be treated relativistically, but this is quite costly.

It is reasonable to consider heavy quarks (for the moment, I mean both c and b quarks) in a nonrelativistic formulation:

►
$$v_{\psi}^2 \sim 0.3$$

► $v_{\Upsilon}^2 \sim 0.1$

If we understand how to treat b quarks on the lattice, we can use the same action in heavy-light mesons \rightarrow input for CKM matrix elements.

- 4 ∃ →

	Lattice NRQCD	Fitting		Current & Future Work	Summary
	●○				
	000		00		
NRQCD Action					

NRQCD Action

The NRQCD Hamiltonian is:

$$\begin{aligned} aH &= aH_0 + a\delta H; \\ aH_0 &= -\frac{\Delta^{(2)}}{2am_b}, \\ a\delta H &= -c_1 \frac{\left(\Delta^{(2)}\right)^2}{8\left(am_b\right)^3} + c_2 \frac{i}{8\left(am_b\right)^2} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right) \\ &- c_3 \frac{1}{8\left(am_b\right)^2} \sigma \cdot \left(\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla}\right) \\ &- c_4 \frac{1}{2am_b} \sigma \cdot \tilde{\mathbf{B}} + c_5 \frac{\Delta^{(4)}}{24am_b} - c_6 \frac{\left(\Delta^{(2)}\right)^2}{16n\left(am_b\right)^2}. \end{aligned}$$

Brian Colquhoun NRQCD Studies of the Υ Spectrum

3 University of Glasgow

= 990

・ロト ・回ト ・ヨト ・ヨ

	Lattice NRQCD	Fitting		Current & Future Work	Summary
	00		00000		
NRQCD Action					

Time Evolution

Heavy quark propagator described by a time evolution equation:

$$G(\vec{x},t+1) = \left(1 - \frac{a\delta H}{2}\right) \left(1 - \frac{aH_0}{2n}\right)^n U_t^{\dagger}(x) \\ \times \left(1 - \frac{aH_0}{2n}\right)^n \left(1 - \frac{a\delta H}{2}\right) G(\vec{x},t)$$

with the starting condition,

$$G(\mathbf{x},0) = \phi(\mathbf{x})\mathbf{1}.$$

This is then just an initial value problem!

Brian Colquhoun NRQCD Studies of the Υ Spectrum

	Lattice NRQCD	Fitting		Current & Future Work	Summary
	00		00000		
0	000		00		
Lattice Details					

Improved 2 + 1 + 1 Gluon Field Configurations

We use gluon fields from the MILC collaboration. Ensembles wih various values of the lattice spacing, a, and they all now include c quarks in the sea.

Set	β	am_l	am_s	am_c	$L/a \times T/a$
1	5.80	0.013	0.065	0.838	16×48
2	5.80	0.0064	0.064	0.0828	24×48
3	6.00	0.0102	0.0509	0.635	24×64
4	6.00	0.00507	0.0507	0.0628	32×64
5	6.30	0.0074	0.037	0.440	32×96

Phys Rev D 82 114502, 1002.3966

I will (at some point) refer to sets 1 and 2 as 'very coarse' sets 3 and 4 as 'coarse' and set 5 as 'fine'.

	Lattice NRQCD	Fitting	Current & Future Work	Summary
	000			
Lattice Details				

NRQCD parameters

Various parameters used in the NRQCD action:

Set	am_b	u_{0L}	n_{cfg}
1	3.42	0.8195	1021
2	3.39	0.82015	1000
3	2.66	0.834	1053
4	2.62	0.8349	1000
5	1.91	0.8525	874

メロト メポト メポト メ

Brian Colquhoun NRQCD Studies of the Υ Spectrum

	Lattice NRQCD	Fitting		Current & Future Work	Summary
	000		00		
Lattice Details					

Coefficients improved through $\mathcal{O}(\alpha_s)$

For each of the coefficients in the NRQCD Hamilitonian, the tree level value is 1. We have used the $\mathcal{O}(\alpha_s)$ improved values for c_1 , c_5 and c_6 .

Set	c_1	c_5	c_6
very coarse	1.36	1.21	1.36
coarse	1.31	1.16	1.31
fine	1.21	1.12	1.21

Brian Colquhoun NRQCD Studies of the Υ Spectrum

	Lattice NRQCD	Fitting ●0	Results 00000	Current & Future Work o	
Fitting					

Fitting

Meson 2-point functions:

$$C(t) = \langle \bar{\psi}(t, \vec{x}) \Gamma \psi(t, \vec{x}) (\bar{\psi}(0) \Gamma \psi(0))^{\dagger} \rangle$$

Bayesian fitting is used to extract energies from our correlator data. We use functions of the form:

$$G_{\text{meson}}(n_{sc}, n_{sk}; t) = \sum_{k=1}^{n_{exp}} a(n_{sc}, k) a^*(n_{sk}, k) e^{-E_k t}$$

We can fit for various numbers of exponentials. The errors quickly equilibrate with only a few exponentials in the fit.

	Lattice NRQCD	Fitting		Current & Future Work	Summary
	00	00	00000		
Fitting					

Kinetic Mass

- ► There is no mass term in the NRQCD action → ground state energy ≠ meson mass.
- To deal with that we obtain correlators with a finite momentum to calculate the *kinetic mass*,

$$aM_{\rm Kin} = \frac{a^2 P^2 - (a\Delta E)^2}{2a\Delta E},$$

where $a\Delta E$ is the energy difference between the finite momentum and zero momentum meson.

Image: A math a math

	Lattice NRQCD oo ooo	Fitting 00	Results ●0000 00	Current & Future Work o o	
Kinetic Mass					

Kinetic Mass

Brian Colquhoun NRQCD Studies of the Υ Spectrum

	Lattice NRQCD 00 000	Fitting 00	Results 0●000 00	Current & Future Work o o	
Kinetic Mass					

Kinetic Mass

Brian Colquhoun NRQCD Studies of the Υ Spectrum

	Lattice NRQCD 00 000	Fitting 00	Results 00●00 00	Current & Future Work o o	
Kinetic Mass					

Spin Average

Brian Colquhoun NRQCD Studies of the Υ Spectrum

	Lattice NRQCD 00 000	Fitting 00	Results 000●0 00	Current & Future Work o o	
Kinetic Mass					
- 0					

$P^2 = 9$ Splitting

There is a discretisation error in the form of rotational invariance and we can look at this effect.

- ▶ There are two different ways that we can get $P^2 = 9$: (3, 0, 0) and (2, 2, 1)
- On-axis and off-axis momenta give slightly different values of the kinetic mass

Image: A math a math

	Lattice NRQCD 00 000	Fitting 00	Results 0000● 00	Current & Future Work o o	
Kinetic Mass					

$P^2 = 9$ Splitting

Brian Colquhoun

University of Glasgow

NRQCD Studies of the Υ Spectrum

	Lattice NRQCD	Fitting	Results	Current & Future Work	Summary
	00		00000		
	0000		00		
$\eta_b(2S)$ Prediction					

$\eta_b(2S)$ Prediction

Prediction of the $\eta_b(2S)$ state through the ratio of the hyperfine splitting:

$$R_H = \frac{M(\Upsilon') - M(\eta'_b)}{M(\Upsilon) - M(\eta_b)}$$

This deals with effects from the c_4 term and any slight mistunings of m_b . Using the experimental average for the 1S hyperfine splitting we get a 2S hyperfine splitting of $35 \pm 3 \pm 1$ MeV. This leads to:

$$m_{\eta_b'} = 9988 \pm 3 \text{ MeV}$$

< ロ > < 同 > < 回 > < 回 > < 回

	Lattice NRQCD	Fitting	Results	Current & Future Work	Summary
			00		
$\eta_b(2S)$ Prediction					

Evidence of η'_b state at Belle

[arXiv:1205.6351v1]

The Belle Collaboration have reported evidence of the $\eta_b(2S)$ state!

	Belle	HPQCD	Meinel ¹
$M(\Upsilon') - M(\eta'_b)$	$24.5^{+4.0}_{-4.5} \text{ MeV}$	$35\pm3\pm1~{\rm MeV}$	$23.5\pm4.7~{\rm MeV}$
			$28.0\pm4.7~{\rm MeV}$
$m_{\eta_b'}$	$9999.0 \pm 3.5^{+2.8}_{-1.9} \text{ MeV}$	$9988 \pm 3~{\rm MeV}$	-

¹Phys Rev D 82 114502, 1002.3966

Brian Colquhoun

NRQCD Studies of the Y Spectrum

University of Glasgow

	Lattice NRQCD 00 000	Fitting 00	Results 00000 00	Current & Future Work	
Current Work					

Matching for Momenta

- Missing relativistic information and this needs sorted to reduce errors.
- Match lattice temporal moments to continuum moments. Lattice moments calculated using,

$$G_n \equiv \sum_t \left(t/a \right)^n G(t),$$

where G(t) is the correlator at lattice time t,

$$G(t) \equiv a^{6} \sum_{x} (am_{b})^{2} \langle 0|j_{5}(\mathbf{x},t)j_{5}(0,0)|0\rangle,$$

• Could use to extract the mass, m_b , or extract the value of the strong coupling, α_s .

	Lattice NRQCD	Fitting 00	Results 00000	Current & Future Work	
The Future					

Future Work & Stuff I Left Out!

(Or stuff that, actually, others worked on)

Lattice spacing determined from our calculations...

- $\Upsilon(2S) \Upsilon(1S)$
- η_s meson
- In addition to the work on S-wave states, some work has been done on P- and D-wave states.
- Heavy-light mesons

	Lattice NRQCD		Current & Future Work	Summary
	00 000	00000 00		•
Summary				

- Lattice NRQCD is useful for the precision calculations of systems involving a b quark
- The improved action and improved gluon field configurations used here reduces errors on previous calculations
- NRQCD could be used for the extraction of m_b and α_s
- ▶ The action can be used for other mesons that include a b quark → B physics and CKM matrix elements

< ∃ >

Tuning of the Darwin Term

Coarse Y Amplitude Ratios (nexp=9)

NRQCD Studies of the Υ Spectrum