

# The $\Upsilon$ Spectrum & Semileptonic Decays with NRQCD b Quarks

Brian Colquhoun

Young Theorists' Forum 2013

18 December 2013



Brian Colquhoun

| Lattice QCD<br>●○ | NRQCD | Semileptonic Decays | Future Directions |
|-------------------|-------|---------------------|-------------------|
| Lattice QCD       |       |                     |                   |
|                   |       |                     |                   |

# QCD on the Lattice

- Space-time lattice with lattice spacing *a*. Quarks live on the lattice sites. Gluon exist on the links between.
- Put valence quarks on a set of gluon field configurations. We use  $\sim 1000$  of these background snapshots per set.
- Different lattice spacings; finer spacings closer to real world.

• Free parameters: quarks masses, coupling constant; tune these, use the results elsewhere.



The  $\Upsilon$  Spectrum & Semileptonic Decays with NRQCD b Quarks

Brian Colguhoun

| Lattice QCD<br>⊙● | NRQCD | Semileptonic Decays | Future Directions |
|-------------------|-------|---------------------|-------------------|
| Lattice QCD       |       |                     |                   |
|                   |       |                     |                   |

# Big Machines

- Lattice QCD calculations are computationally expensive.
- Supercomputers are utilized to carry out these calculations.
- Modern computing power allows for effects from sea quarks and for finer lattices.



The Darwin Cluster

University of Glasgow



# bs on a Lattice

- Nonrelativistic QCD (NRQCD) is useful for heavy quarks on the lattice, so any b quarks bound inside a meson can be simulated with NRQCD.
- It's feasible to consider b quarks as nonrelativistic:  $v^2 \approx 0.1$  for  $\Upsilon.$
- NRQCD uses an expansion of powers of  $v^2$ .
- No doubling problem!
- It is matched to full QCD and can subsequently be used wherever there is a *b* quark.

Image: A math a math



# NRQCD Hamiltonian

The NRQCD Hamiltonian I use here  $(\mathcal{O}(v^4))$  is:

$$\begin{aligned} aH &= aH_0 + a\delta H; \\ aH_0 &= -\frac{\Delta^{(2)}}{2am_b}, \\ a\delta H &= -c_1 \frac{\left(\Delta^{(2)}\right)^2}{8\left(am_b\right)^3} + c_2 \frac{i}{8\left(am_b\right)^2} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right) \\ &- c_3 \frac{1}{8\left(am_b\right)^2} \sigma \cdot \left(\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla}\right) \\ &- c_4 \frac{1}{2am_b} \sigma \cdot \tilde{\mathbf{B}} + c_5 \frac{\Delta^{(4)}}{24am_b} - c_6 \frac{\left(\Delta^{(2)}\right)^2}{16n\left(am_b\right)^2}. \end{aligned}$$

Brian Colquhoun

University of Glasgow

・ロト ・日子・ ・ ヨト

| Lattice QCD<br>00 | NRQCD | Semileptonic Decays | Future Directions |
|-------------------|-------|---------------------|-------------------|
|                   |       |                     |                   |

**Evolution** equation



$$\begin{aligned} G\left(\vec{x},t+1\right) &= \left(1-\frac{a\delta H}{2}\right)\left(1-\frac{aH_0}{2n}\right)^n U_t^{\dagger}(x) \\ &\times \left(1-\frac{aH_0}{2n}\right)^n \left(1-\frac{a\delta H}{2}\right) G\left(\vec{x},t\right) \end{aligned}$$

Brian Colquhoun

University of Glasgow

| Lattice QCD<br>00 | NRQCD | Semileptonic Decays | Future Directions |
|-------------------|-------|---------------------|-------------------|
|                   |       |                     |                   |
| <u> </u>          |       |                     |                   |

### Coefficients

Coefficients  $c_i = 1 + c_i^{(1)} \alpha_s + \mathcal{O}(\alpha_s^2)$  fixed to match NRQCD and full QCD.

| Set         | $c_1$ | $c_4$  | $c_5$ | $c_6$ |
|-------------|-------|--------|-------|-------|
| very coarse | 1.36  | (1.22) | 1.21  | 1.36  |
| coarse      | 1.31  | (1.20) | 1.16  | 1.31  |
| fine        | 1.21  | (1.16) | 1.12  | 1.21  |

Image: A math a math

The  $\Upsilon$  Spectrum & Semileptonic Decays with NRQCD b Quarks

Brian Colguhoun

| Lattice QCD<br>00 | NRQCD | Semileptonic Decays | Future Directions |
|-------------------|-------|---------------------|-------------------|
|                   |       |                     |                   |

# **Gluon Field Configurations**

The work here uses improved gluon field configurations with 2+1+1 flavours of quarks in the sea. The latest calculations are on ensembles with *physical* light quark masses.

| Set | $\beta$ | $am_l$  | $am_s$ | $am_c$ | $L/a \times T/a$ |
|-----|---------|---------|--------|--------|------------------|
| 1   | 5.80    | 0.013   | 0.065  | 0.838  | $16 \times 48$   |
| 2   | 5.80    | 0.0064  | 0.064  | 0.828  | $24 \times 48$   |
| 3   | 5.80    | 0.00235 | 0.0647 | 0.831  | $32 \times 48$   |
| 4   | 6.00    | 0.0102  | 0.0509 | 0.635  | $24 \times 64$   |
| 5   | 6.00    | 0.00507 | 0.0507 | 0.628  | $32 \times 64$   |
| 6   | 6.00    | 0.00184 | 0.0507 | 0.628  | $48 \times 64$   |
| 7   | 6.30    | 0.0074  | 0.037  | 0.440  | $32 \times 96$   |
| 8   | 6.30    | 0.0012  | 0.0363 | 0.432  | $64 \times 96$   |

Brian Colquhoun

University of Glasgow



# $\Upsilon$ and $\eta_b$ [1110.6887]

We want to apply NRQCD to b quarks, so

- Both  $\eta_b$  and  $\Upsilon$  are  $b\bar{b}$  states
- $\eta_b$  is a pseudoscalar meson,  $\Upsilon$  a vector; just insert operators
- Experimentally well understood: particularly  $\Upsilon$
- I'll consider here the ground states at various momenta



Brian Colquhoun



# Fitting

We run several time sources per configuration. For this: 4.

We use a Bayesian fitting approach to fit two-point functions to,

$$C(t) = \sum_{n}^{\text{nexp}} a^2 e^{-E_n t}$$

Image: A math a math

University of Glasgow

We have loose priors set for the energies, the energy differences and the amplitudes. All the momenta were fit simultaneously.



#### Kinetic Mass

- mass term explicitly removed
  - $\bullet\,$  ground state energy  $\neq\,$  ground state mass
  - energy differences do correspond to mass differences

We can use kinetic mass:

$$M_{\rm kin} = \frac{a^2 P^2 - (a\Delta E)^2}{2a\Delta E}$$

In principle, this should give results that are stable over a range of momenta. Let's see...

Image: A match a ma

University of Glasgow



# Kinetic Mass Results



#### Brian Colquhoun

University of Glasgow



# Lattice Artifacts



#### Brian Colquhoun

University of Glasgow



# Matrix Elements

Correlators are of form  $\sum_n |\langle 0|\Gamma|n\rangle|^2 e^{-E_nt}$ . So amplitudes of fit correspond to matrix element.

We want to ensure the correct behaviour of the amplitudes, so this is an area for correction of the currents. We take our improved currents to be,

$$\mathbf{J}_i = \sigma \left(\frac{\Delta^2}{M^2}\right)^i$$

We need to determine the correct coefficients to match them to full QCD as usual.

Image: A match a ma

University of Glasgow



### Amplitude Corrections



#### Brian Colquhoun

University of Glasgow

Lattice QCD NRQCD Bottomonium Semileptonic Decays Future Directions

### Stuff I didn't do. . . but someone else did

- Excited states for  $\Upsilon$  and  $\eta_b$
- Lattice space determination
  - $\Upsilon(2S)$ - $\Upsilon(1S)$
  - From  $\eta_s$
- Determination of *P* and *D* waves.
- Prediction of  $\eta_b(2S)$  states.
  - Evidence for this at both Belle and CLEO.



# Semileptonic Decays

- Semileptonic decays are flavour changing processes where a W boson is emitted.
- Possible to study this on the lattice.
- When dealing with lattice QCD, we're only seeing the strong force stuff, so when the W Boson leaves we know nothing more about it.
- But this is still useful, and we can get plenty of information about what's going on.

B Decays



- The b quark can be studied with NRQCD. Light quarks HISQ (a relativistic formulation)
- Decay constants & form factors from semileptonic B decays
- Get matrix element from lattice QCD → CKM matrix elements from lattice QCD and experiment.

#### Brian Colquhoun

# Semileptonic Form Factors

Matrix element relevant to this decay can be parametrised by form factors  $f_+(q^2)$  and  $f_0(q^2)$ :

$$\langle B|V^0|\pi\rangle = f_+(q^2) \left( p_B^{\mu} + p_{\pi}^{\mu} - \frac{m_B^2 - m_{\pi}^2}{q^2} \right) + f_0(q^2) \frac{m_B^2 - m_{\pi}^2}{q^2} q^{\mu}$$

Image: A math a math

University of Glasgow

But here I am only considering the case where the B and  $\pi$  3-momenta are 0, so the W Boson would have maximum momentum,  $q_{\rm max}.$ 

| Lattice QCD<br>00 | NRQCD | Semileptonic Decays | Future Directions |
|-------------------|-------|---------------------|-------------------|
|                   |       |                     |                   |
|                   |       |                     |                   |

# Currents

We use the following:

$$J_0^{(0)}(x) = \bar{q}(x)\Gamma_0 Q(x)$$
  

$$J_0^{(1)}(x) = \bar{q}(x)\Gamma_0 \gamma \cdot \nabla Q(x)$$
  

$$J_0^{(2)}(x) = \bar{q}(x)\gamma \cdot \overleftarrow{\nabla}\gamma_0 \Gamma_0 Q(x)$$

Matched via:

$$\langle V_0 \rangle = (1 + \alpha_s \rho_0^{(0)}) \langle J_0^{(0)} \rangle + (1 + \alpha_s \rho_0^{(1)}) \langle J_0^{(1), sub} \rangle + \alpha_s \rho_0^{(2)} \langle J_0^{(2)} \rangle$$

Brian Colquhoun

University of Glasgow

A B > 4
 B > 4
 B



### 3pt, 2pt Correlator Ratios



#### Brian Colquhoun

University of Glasgow

The  $\Upsilon$  Spectrum & Semileptonic Decays with NRQCD b Quarks

Lattice QCD NRQCD Bottomonium Semileptonic Decays Future Directions

# Fitting

- Fitting very similar to 2-point fits, but fit 2-points for B and  $\pi$  with 3-point simultaneous
  - The 2-point correlators were generated seperately by Rachel Dowdall
- Difference here is addition of quark smearing (on the *b* quarks)
  - This basically gives ground state quicker
  - All smearings are fit simultaneously, too

#### Fit function

$$C_{3\text{pt}}(t) = \sum_{i,j}^{\text{nexp}} a_i b_{j,\text{sm}} V_{00} e^{-E_{\pi}^{(i)} t} e^{-E_B^{(j)} t}$$

Image: A match a ma

University of Glasgow

Brian Colquhoun



# $f_0$ Form Factor

At  $q_{\text{max}}^2$ , only left with  $f_0$ .

$$\langle B|V^0|\pi\rangle = f_0(q_{\max}^2)(m_B^2 + m_{\pi}^2)$$

Can get this directly from the fit through:

$$f_0(q_{\rm max}^2) = 4\sqrt{2}V_{00}\frac{\sqrt{m_B m_\pi}}{m_B + m_\pi}$$

Brian Colquhoun

The Y Spectrum & Semileptonic Decays with NRQCD b Quarks

University of Glasgow

<<p>(日)



## Soft Pion Theorem

The soft pion theorem relates the decay constants of the B and  $\pi$  to  $f_0(q^2_{\rm max})$ 

$$f_{\pi} = 2m_l \sqrt{\frac{2}{E_{\pi}^3}} a_0$$

$$f_B \sqrt{m_B} = 2b_0$$

Image: A math a math

In the limit,  $m_\pi 
ightarrow 0$ , the soft pion theorem says

$$f_0(q_{\rm max}^2) = \frac{f_B}{f_\pi}$$

Brian Colquhoun

The  $\Upsilon$  Spectrum & Semileptonic Decays with NRQCD b Quarks

University of Glasgow



#### Soft Pion Theorem





# Relativistic Heavy Quarks

It is perfectly possible to study heavy quarks relativistically, but it's different:

- Errors are unreasonable at large quark mass, still
- The c quark can now be treated relativistically
- Can get correlators for a range of quark masses,  $m_c < m_q < m_b$
- Do this in a range of ensembles, just like usual
- Extrapolate
- A relativistic treatment allows direct comparison between methods.

Image: A match a ma

### CKM Matrix Elements

At non-zero recoil, i.e.  $q^2 < q^2_{\rm max}$ , we can get both  $f_0(q^2)$  and  $f_+(q^2).$  (  $f_0(0)=f_+(0)=1$  )

This allows access to the following:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 M_B^3} \left[ \left( M_B^2 + M_\pi - q^2 \right)^2 - 4M_B^2 M_\pi^2 \right]^{3/2} \left| f_+(q^2) \right|^2.$$

So in combination with experimental results and known factors, can extract  $\left|V_{ub}\right|$ 

Image: A math a math

University of Glasgow

# Other Semileptonic Decays

We can consider other decays (actually, I am doing):

- $B_s \to K \ell \nu$ , different spectator
- $B_s \to \eta_s \ell \nu$ , different spectator and active
  - The  $\eta_s$  doesn't exist in the real world
  - On the lattice, we can make it exist and study it

Image: A math a math

| Lattice QCD<br>00 | NRQCD | Semileptonic Decays | Future Directions<br>0●0 |
|-------------------|-------|---------------------|--------------------------|
| NRQCD Improvement |       |                     |                          |

# NRQCD Improvement

There are two ways this can be done:

- Do further corrections to coefficients  $c_i$ 
  - Already have  $c_4$  coefficient to  $\mathcal{O}(lpha_s)$  now
  - Darwin term,  $c_2$ , has been improved for use, too
- Extra terms in Hamiltonian
  - Work here is at  $\mathcal{O}(v^4)$ . Can go to  $\mathcal{O}(v^6)$

→ ∢ ∃ →

| Lattice QCD<br>00 | NRQCD | Semileptonic Decays | Future Directions<br>00● |
|-------------------|-------|---------------------|--------------------------|
| NRQCD Improvement |       |                     |                          |
|                   |       |                     |                          |

# Summary

- Lattice QCD essential for nonperturbative calculations of the strong force
- Lattice NRQCD is useful for the precision calculations of systems involving a *b* quark
- Gives good results for bottomonium states
- Same b quarks and ensembles used for other calculations
- Can use it to extract  $f_0(q_{\max}^2)$
- Soft pion theorem holds
- CKM matrix elements can be determined
- NRQCD can be extended for use on these things plus more