NRQCD

Bottomonium

B Physic

Future Directions

Bottomonium and B Physics with Lattice NRQCD b Quarks

Brian Colquhoun

29 October 2014

Brian Colquhoun

University of Glasgow

Lattice QCD NRQCD Bottomonium B Physics Future Directions ●oo Lattice QCD

QCD on the Lattice

- Space-time lattice with lattice spacing a. Quarks live on the lattice sites.
 Gluon exist on the links between.
- Put valence quarks on a set of gluon field configurations. We use ~ 1000 of these background snapshots per set.
- Different lattice spacings; finer spacings closer to real world.

• Free parameters: quarks masses, coupling constant; tune these, use the results elsewhere.

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

Lattice QCD 0●0	NRQCD	B Physics	Future Directions
Lattice QCD			

Big Machines

- Lattice QCD calculations are computationally expensive.
- Supercomputers are utilized to carry out these calculations.
- Computing power allows calculations including light (u/d) quarks down to physical mass

The Darwin Cluster

Brian Colquhoun

Lattice QCD 00●	NRQCD	B Physics	Future Directions
Lattice QCD			

Problem:

Errors grow with mass of heavy quark (in lattice units)

2 F	Possible Solutions:		
1)	Various quark masses between m_c and as close to m_b as possible \rightarrow extrapolate to m_b .	2)	Use formalism that <i>somehow</i> allows physical <i>b</i> quark mass to be used.

Brian Colquhoun

University of Glasgow

< □ > < 同 >

- Nonrelativistic QCD (NRQCD) is useful for heavy quarks on the lattice, so any b quarks bound inside a meson can be simulated with NRQCD.
 - It's feasible to consider b quarks as nonrelativistic: $v^2 \approx 0.1$ for $\Upsilon.$
 - NRQCD uses an expansion of powers of v^2 to desired order.
 - Match to full QCD and can subsequently be used wherever there is a *b* quark.

NRQCD Hamiltonian

The NRQCD Hamiltonian I use here $(\mathcal{O}(v^4))$ is:

$$\begin{aligned} aH &= aH_0 + a\delta H; \\ aH_0 &= -\frac{\Delta^{(2)}}{2am_b}, \\ a\delta H &= -c_1 \frac{\left(\Delta^{(2)}\right)^2}{8\left(am_b\right)^3} + c_2 \frac{i}{8\left(am_b\right)^2} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right) \\ &- c_3 \frac{1}{8\left(am_b\right)^2} \sigma \cdot \left(\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla}\right) \\ &- c_4 \frac{1}{2am_b} \sigma \cdot \tilde{\mathbf{B}} + c_5 \frac{\Delta^{(4)}}{24am_b} - c_6 \frac{\left(\Delta^{(2)}\right)^2}{16n\left(am_b\right)^2}. \end{aligned}$$

Brian Colquhoun

University of Glasgow

・ロト ・回ト ・目ト

Evolution equation

$$\begin{split} G\left(\vec{x},t+1\right) &= \left(1-\frac{a\delta H}{2}\right)\left(1-\frac{aH_0}{2n}\right)^n U_t^{\dagger}(x) \\ &\times \left(1-\frac{aH_0}{2n}\right)^n \left(1-\frac{a\delta H}{2}\right)G\left(\vec{x},t\right) \end{split}$$

Brian Colquhoun

University of Glasgow

Gluon Field Configurations

The work here uses improved gluon field configurations with 2+1+1 flavours of quarks in the sea. The latest calculations are on ensembles with *physical* light quark masses.

Set	β	am_l	am_s	am_c	$L/a \times T/a$
1	5.80	0.013	0.065	0.838	16×48
2	5.80	0.0064	0.064	0.828	24×48
3	5.80	0.00235	0.0647	0.831	32×48
4	6.00	0.0102	0.0509	0.635	24×64
5	6.00	0.00507	0.0507	0.628	32×64
6	6.00	0.00184	0.0507	0.628	48×64
7	6.30	0.0074	0.037	0.440	32×96
8	6.30	0.0012	0.0363	0.432	64×96

Brian Colquhoun

University of Glasgow

b Quark Parameters

Set	am_b	u_{0L}	c_1	c_4	c_5	c_6
1	3.297	0.8195	1.36	1.22	1.21	1.36
2	3.263	0.82015	1.36	1.22	1.21	1.36
3	3.25	0.819467	1.36	1.22	1.21	1.36
4	2.66	0.834	1.31	1.20	1.16	1.31
5	2.62	0.8349	1.31	1.20	1.16	1.31
6	2.62	0.834083	1.31	1.20	1.16	1.31
7	1.91	0.8525	1.21	1.16	1.12	1.21
8	1.89	0.851805	1.21	1.16	1.12	1.21

Brian Colquhoun

University of Glasgow

・ロト ・回ト ・ヨト

Bottomonium Physics [1110.6887],[1408.5768]

We want to apply NRQCD to b quarks

- Both η_b and Υ are bottomonium mesons: $b\bar{b}$ states
- Experimentally well understood: particularly Υ

Lattice QCD 000	NRQCD	Bottomonium	B Phy		Future Directior	
Fitting We use a B	Bavesian fitting	approach	st 1.8	$\frac{1}{4}$ ³ S ₁ err	or vs exponential	7-
to simultar two-point (neously fit η_b a correlators to,	nd Y	- 1.6 - тарити - 1.2 - щ - 1.2 - щ - 1.2	÷ † †	+ $+$ $+$ $+$ $+$ $+$ $+$	-
$C(t) = \sum_{n_{\rm exp}}^{n_{\rm exp}}$	$\sum_{p=1}^{p-1} A e^{-E_n t}$		$\begin{array}{c} 8.0 \\ H \\ $	- + + + 	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	-
$=\sum_{n_{\text{exp}}}^{n_{\text{exp}}}$	$\sum_{p=1}^{\infty} c(\phi_{ m sc}, n) c^*(\phi_{ m sc})$	$(\phi_{\rm sk}, n)e^{-E_nt}$	1		p	_

University of Glasgow

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

n=0

Lattice QCD 000	NRQCD	Bottomonium	B Physics	Future Directions
Kinatia M				

Kinetic Mass

- mass term explicitly removed
 - $\bullet~{\rm ground}~{\rm state}~{\rm energy}\neq {\rm ground}~{\rm state}~{\rm mass}$
 - energy differences do correspond to mass differences

We can use *kinetic mass*.

$$aE(P) = \sqrt{a^2P^2 + a^2M_{\rm kin}}$$

$$M_{\rm kin} = \frac{a^2 P^2 - (a\Delta E)^2}{2a\Delta E}$$

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

< 17 ▶

∃ >

Kinetic Mass Results

Brian Colquhoun

University of Glasgow

Lattice QCD 000	NRQCD	Bottomonium	B Physics	Future Directions

Lattice Artifacts

Brian Colquhoun

University of Glasgow

Υ Decay Constant & Leptonic Width

Leptonic Width

$$\Gamma(\Upsilon^{(n)} \to e^+ e^-) = 16\pi \alpha_{\rm em}^2 e_b^2 \frac{|\langle 0|J_{V,\rm NRQCD}|\Upsilon^{(0)}\rangle|^2}{M_{\Upsilon^{(n)}}^2} Z_V^2$$

Decay constant:

 $\langle 0|J_V|\Upsilon\rangle = f_{\Upsilon^{(n)}}M_{\Upsilon^{(n)}}$

$$\Gamma(\Upsilon^{(n)} \to e^+ e^-) = \frac{4\pi}{3} \alpha_{\rm em}^2 e_b^2 \frac{f_{\Upsilon^{(n)}}^2}{M_{\Upsilon^{(n)}}}$$

< □ > < 同 >

University of Glasgow

Brian Colquhoun

Lattice QCD 000	NRQCD	Bottomonium	B Physics	Future Directions

Vector Currents

$$\mathbf{J_i} = \sigma \left(\frac{\Delta^2}{m_b^2}\right)^i$$

$$\mathbf{J_0} = \sum_{x;i=1}^3 \chi_x^{\dagger} \sigma \Psi_x$$
$$\mathbf{J_1} = \sum_{x;i=1}^3 \chi_x^{\dagger} \frac{\sigma}{(am_b)^2} \times (\Psi_{x+\hat{\imath}} + \Psi_{x-\hat{\imath}} - 2\Psi_x),$$

$$\langle 0 | \mathbf{J}^{\text{QCD}} | \bar{Q} Q \rangle = \sum_{i} k_i \langle 0 | \mathbf{J}_i | \bar{Q} Q \rangle, \qquad k_i = \sum_{n} \alpha_s^n k_i^{(n)}$$

Brian Colquhoun

University of Glasgow

Lattice QCD NRQCD Bottomonium *B* Physics Future Directions 000

Temporal Moments & Z_V Matching Factor

$$J_V = Z_V J_{V,\text{NRQCD}}$$

= $Z_V (J_{V,\text{NRQCD}}^{(0)} + k_1 J_{V,\text{NRQCD}}^{(1)}),$

$$G_n^{V,\text{NRQCD}} = 2\sum_t \left(t/a\right)^n C_{V,\text{NRQCD}}(t) e^{(\overline{E_0} - \overline{M}_{\text{kin}})t}.$$

for $n = 4, 6, 8, \ldots$

Matching to continuum QCD:

$$G_n^V = Z_V^2 G_n^{V, \rm NRQCD}$$

Brian Colquhoun

University of Glasgow

A B > A B >

Temporal Moments & Z_V Matching Factor

$$G_n^V = \frac{g_n^V(\alpha_s, \mu/m_b)}{[a\overline{m}_b(\mu)]^{n-2}}.$$

$$Z_V = \left(\frac{G_n^V}{G_n^{V,(0)} r_n^V}\right)^{\frac{(n'-2)}{2(n-n')}} \left(\frac{G_{n'}^{V,(0)} r_{n'}^V}{G_{n'}^V}\right)^{\frac{(n-2)}{2(n-n')}},$$

Image: Image:

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

 Z_V

Brian Colquhoun

University of Glasgow

Brian Colquhoun

University of Glasgow

Υ^\prime Leptonic Width

Harder to get excited states: so use 3×3 fit. Convenient to take ratio, cancel Z_V :

$$A = \frac{\langle 0|J_V|\Upsilon'\rangle}{\langle 0|J_V|\Upsilon\rangle} = \frac{f_{\Upsilon'}}{f_{\Upsilon}}\sqrt{\frac{M_{\Upsilon'}}{M_{\Upsilon}}}$$

Brian Colquhoun

University of Glasgow

Decay Constant

$$f_{\Upsilon'} = 0.481(39) \text{ GeV}$$

$$\Gamma(\Upsilon' \to e^+ e^-) = 0.69(9) \text{ keV}$$

< Ø →

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

LQCD Decay Constants

Brian Colquhoun

University of Glasgow

Lattice QCD 000	NRQCD	Bottomonium	B Physics	Future Directions
-				

 $R_{e^+e^-}$

Brian Colquhoun

University of Glasgow

< Ø →

Determination of m_b

These temporal moments can be used to calculate the mass of the b quark.

$$\overline{m}_b(\mu) = \frac{\overline{M}_{\Upsilon,\eta_b}}{2} \left[\frac{R_{n-2}r_n}{R_n r_{n-2}} \right]^{1/2} \frac{2m_b}{\overline{M}_{\rm kin}}$$

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

Image: Image:

Determination of m_b

Brian Colquhoun

University of Glasgow

Determination of m_b

$$\bar{m}_b(\mu = \bar{m}_b \text{ GeV}, n_f = 5) = 4.196(23) \text{ GeV}$$

▲日▼▲圖▼▲画▼▲画▼ 画 のみぐ

Brian Colquhoun

University of Glasgow

Brian Colquhoun

University of Glasgow

B Decays

- The b quark can be studied with NRQCD. Light quarks HISQ (a relativistic formulation)
- Decay constants & form factors from semileptonic B decays
- Get matrix element from lattice QCD → CKM matrix elements from lattice QCD and experiment.

Brian Colquhoun

Semileptonic Form Factors

Matrix element relevant to this decay can be parametrised by form factors $f_+(q^2)$ and $f_0(q^2)$:

$$\langle B|V^0|\pi\rangle = f_+(q^2)\left(p_B^{\mu} + p_{\pi}^{\mu} - \frac{m_B^2 - m_{\pi}^2}{q^2}\right) + f_0(q^2)\frac{m_B^2 - m_{\pi}^2}{q^2}q^{\mu}$$

< □ > < 同 >

University of Glasgow

But here I am only considering the case where the B and π 3-momenta are zero

Lattice QCD 000	NRQCD	B Physics	Future Directions

Currents

We use the following:

$$J_0^{(0)}(x) = \bar{q}(x)\Gamma_0 Q(x)$$

$$J_0^{(1)}(x) = \bar{q}(x)\Gamma_0 \gamma \cdot \nabla Q(x)$$

$$J_0^{(2)}(x) = \bar{q}(x)\gamma \cdot \overleftarrow{\nabla}\gamma_0 \Gamma_0 Q(x)$$

Matched via:

$$\langle V_0 \rangle = (1 + \alpha_s \rho_0^{(0)}) \langle J_0^{(0)} \rangle + (1 + \alpha_s \rho_0^{(1)}) \langle J_0^{(1), sub} \rangle + \alpha_s \rho_0^{(2)} \langle J_0^{(2)} \rangle$$

Brian Colquhoun

University of Glasgow

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lattice QCD NRQCD Bottomonium **B Physics** Future Directic

3pt, 2pt Correlator Ratios

Brian Colquhoun

University of Glasgow

- Fitting very similar to 2-point fits, but fit 2-points for B and π with 3-point simultaneous
 - Fit correlators with various smearings, and T simultaneously

Fit function

(

$$C(t) = \sum_{k=0}^{n_{\exp}-1} c_k^2 \left(e^{-E_k t} + e^{-E_k(T-t)} \right) - (-1)^{t/a} \sum_{ko=0}^{n_{\exp}-1} \tilde{c}_{ko}^2 \left(e^{-\tilde{E}_{ko}t} + e^{-\tilde{E}_{ko}(T-t)} \right),$$

Brian Colquhoun

University of Glasgow

Lattice QCD NRQCD Bottomonium B Physics Future Directions

f_0 Form Factor

At $q_{\rm max}^2$, only left with f_0 .

$$\langle B|V^0|\pi\rangle = f_0(q_{\max}^2)(m_B^2 + m_\pi^2)$$

Can get this directly from the fit through:

$$f_0(q_{\rm max}^2) = 4\sqrt{2}V_{00}\frac{\sqrt{m_B m_\pi}}{m_B + m_\pi}$$

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

A B > A
 B > A
 B
 A

f_0 Form Factor

Brian Colquhoun

Soft Pion Theorem

The soft pion theorem relates the decay constants of the B and π to $f_0(q^2_{\rm max})$

$$f_{\pi} = 2m_l \sqrt{\frac{2}{E_{\pi}^3}} a_0$$

$$f_B \sqrt{m_B} = 2b_0$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In the limit, $m_\pi
ightarrow 0$, the soft pion theorem says

$$f_0(q_{\rm max}^2) = \frac{f_B}{f_\pi}$$

Brian Colquhoun

Bottomonium and B Physics with Lattice NRQCD b Quarks

University of Glasgow

Soft Pion Theorem

< 🗗

CKM Matrix Elements

At non-zero recoil, i.e. $q^2 < q^2_{\rm max}$, we can get both $f_0(q^2)$ and $f_+(q^2).$ ($f_0(0)=f_+(0)=1$)

This allows access to the following:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 M_B^3} \left[\left(M_B^2 + M_\pi - q^2 \right)^2 - 4M_B^2 M_\pi^2 \right]^{3/2} \left| f_+(q^2) \right|^2.$$

So in combination with experimental results and known factors, can extract $\left|V_{ub}\right|$

Brian Colquhoun

< □ > < 同 >

Other Semileptonic Decays

We can consider other decays (actually, I am doing):

- $B_s \to K \ell \nu$, different spectator
- $B_s \to \eta_s \ell \nu$, different spectator and active
 - The η_s doesn't exist in the real world
 - Can be studied on the lattice

NRQCD Improvement

There are different ways in which to improve on the work using NRQCD:

- Do further corrections to coefficients c_i
- Extra terms in Hamiltonian
 - ${\, \bullet \, }$ Work here is at ${\mathcal O}(v^4).$ Can go to ${\mathcal O}(v^6)$

- Lattice QCD essential for nonperturbative calculations of the strong force
- Lattice NRQCD is useful for the precision calculations of systems involving a *b* quark
- Gives good results for bottomonium states
- Same b quarks and ensembles used for other calculations
- Can use it to extract $f_0(q_{\rm max}^2)$
- Soft pion theorem holds
- V_{ub} matrix element can be determined if pion given momentum

Image: A math a math