
PHYSICAL REVIEW RESEARCH 5, L022008 (2023)
Letter

Information transport and limits of optical imaging in the highly diffusive regime
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Imaging in the highly diffusive regime lies at the heart of various optical medical imaging technologies and
other applications such as imaging through fog. However, due to the randomization of the photon propagation
direction inside random, complex media, the spatial information of physiological features is degraded such that
most diffuse optical imaging techniques are restricted to <10 transport mean free paths (�∗). We present an
information theoretical analysis of the limits of gathering information in the highly diffusive regime. Our results
show that there is still information even when detection is performed at the single-photon level and beyond
200�∗ (e.g., ∼12 cm tissue). Image reconstructions are enhanced when resolving measurements in both space
and time domains. These results provide a general framework for extremely deep diffuse imaging scenarios, such
as imaging through the body, and a general context for developing optimized image retrieval strategies.
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Introduction. Overcoming the challenge of imaging
through thick scattering materials will enable a paradigm shift
in optical medical imaging devices for the human body and
brain which could replace some of the functionality of mag-
netic resonance imaging, positron emission tomography, and
computed tomography scanners with cheaper and nonharmful
alternatives [1–12]. Highly scattering materials have a much
greater probability of scattering photons than absorbing them,
and the randomization of the directional information of each
photon results in structural degradation of the transmitted
image as well as attenuation of the number of photons trans-
mitted in the forward direction through the material. The
average distance traveled by a photon before it is absorbed
or loses information about its initial propagation direction is
quantified by the transport mean free path (TMFP) length
�∗ = 1/(μ′

s + μa), where the reduced scattering coefficient μ′
s

and the absorption coefficient μa of the medium describe the
average number of scattering and absorption events experi-
enced by a photon per unit length, respectively. Materials for
which the total distance a photon has propagated through the
material L � �∗ are said to be in the diffusive regime [13,14].

The task of reconstructing images in the highly diffusive
regime is nontrivial since the problem is ill-posed [15–18],
although computational strategies have successfully improved
the condition of the inverse problem [19–29] and enabled
imaging through >80�∗ [30]. In relatively thin materials
<10�∗, there is a significant probability of detecting, at very
early times, ballistic photons that are transmitted without
any scattering events and which preserve spatial information
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[31–37]. For thicker materials, time-gating is used to isolate
early-arriving photons which have less interaction with the
material and are more likely to preserve information about
their initial propagation direction [18,38–44]. However, it has
been shown that early-arriving photons give little advantage
when imaging beyond 80�∗ since all of the detected photons
are highly scattered [45].

A pioneering study by Latimer [46] showed that concepts
derived from information theory can be useful tools to analyze
the statistical nature of light scattering for the determination of
particulate size distributions. More recently, universal bounds
for the limit of channel capacity through a scattering material
have been derived [47] using ideal conditions. However, there
still remains an open question regarding the actual distance
over which it is ultimately possible to propagate image infor-
mation in diffusive media in realistic conditions.

In this Rapid Communication, we use information theory
to show that, when considering practical constraints on the
problem such as shot noise and reasonable acquisition times,
there remains information for imaging beyond 200�∗. To put
this in context, this implies that information is preserved even
when the signal is effectively reduced to the single-photon
level at the output of the diffusive medium. This information is
not simply encoded in spatial degrees of freedom as one might
expect based on more traditional imaging scenarios; there
is an improved conditionality of the image retrieval inverse
problem when measuring the full space-time-resolved photon
counts. This indicates the possibility of imaging significantly
beyond what has currently been achieved, effectively indicat-
ing a regime for diffuse imaging in future experiments.

Physics of the problem. The photon-diffusion approxima-
tion accurately describes photon statistics in the diffusive
regime [14,48]:

�(�r, t ) = c

(4πDct )3/2
exp

(
− |�r|2

4Dct
− μact

)
, (1)

where �(�r, t ) is the photon fluence rate at the output
(measured in W/cm2), D = 1/[3(μ′

s + μa)] is the diffusion
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coefficient, �r is the radial distance of the output surface of
the material from a source/object pixel, t is time, and c is the
speed of light in the medium.

We can therefore simulate experiments using a forward
operator A(m) to model the spatiotemporal measurement of
diffuse photons in the presence of an embedded absorbing
object in transmission through a highly scattering material.
This is achieved by approximating the intensity profile of a
laser pulse I (x, y, t ) with a Kronecker delta in discretized time
(55 ps time bins) applied uniformly over space and convolving
with the photon fluence rate �(�rm, t ) corresponding to mid-
way through the material. The result is then multiplied with
a binary mask in the shape of the absorbing object we wish
to image m(x, y) and then convolving with the photon fluence
rate at the output plane of the material �(�rout, t ):

A(m) = �(�rout, t ) ∗ [[I (x, y, t ) ∗ �(�rm, t )] � m(x, y)T ], (2)

where ∗ denotes a convolution and � denotes an element-wise
multiplication. The radial vector �rm = √

x2 + y2 + L2
m is the

three-dimensional (3D) Euclidean distance from the source
position to the depth of the hidden absorbing mask Lm, and
�rout is the radial distance from the depth of the mask to the
output plane of material with thickness L. The binary mask
m(x, y)T is repeated T times (the total number of time bins)
to multiply element-wise with the spatial profile of the laser
pulse I (x, y, t ) at every time step.

The probability mass function is obtained from the normal-
ized output photon fluence rate multiplied by the sum of pho-
tons expected at the detector Np. The data are finally quantized
into bins by rounding every element to the nearest integer.

The final simulation output is a 3D spatiotemporal data
cube which can be integrated in space or time to generate
time- or space-only data, respectively. In this case, space-
only measurements are equivalent to using a continuous-wave
laser.

The simplicity of this forward model is chosen since it must
be computationally inexpensive to simulate enough exam-
ples to adequately populate statistical distributions required
for analysis. Although the simulations are limited to a two-
dimensional (2D) absorbing occlusion inside a homogeneous
material, this is like simplified real-world scenarios such as
imaging regions of blood absorption in layers of the human
head with homogeneous properties or when imaging a single
absorbing object through fog with uniform particle density.

Information measured in space and time domains. We use
the Shannon entropy to measure the expected reduction in un-
certainty, measured in bits, upon observing a discrete random
variable xi ∈ X , with probability p(xi ) [49–51]:

H (X ) = −
∑

i

p(xi ) log2 p(xi ). (3)

The aim is to quantify the information contained in the data
that allows us to discriminate between N different absorbing
objects (e.g., N = 1024 binary EMNIST images [52] in our
study) hidden behind a homogeneous, thick scattering mate-
rial when observing the number of photon counts ci ∈ C at
given detector space and time coordinates (x, y, t ):

H (C) = −
K∑
i

p(ci|x, y, t ) log2 p(ci|x, y, t ), (4)

FIG. 1. The information content for a fixed number of measured
photons Np = 1 × 108 for increasing number of transport mean free
paths (TMFPs) when using both space and time information of the
raw data (•), integrating the time trace for every pixel to give only
a number of photon counts over space (multiplied by 50; �) and
integrating the spatial pixels to one time trace (multiplied by 100; ×).
Using data resolved in both space and time gives orders of magnitude
more information than only measuring in the space domain.

where K is the number of bins in the probability mass func-
tion. The total information content in the data is found by
summing H (C) for every pixel coordinate (x, y, t ).

Equation (4) is evaluated in each domain to compare in-
formation content for different measurement regimes. The
results in Fig. 1 show, as may be expected, that information
in space decreases for increasing number of TMFP lengths
since the images become increasingly blurry and less diverse.
Interestingly, the information in time increases with medium
thickness. We interpret this counterintuitive finding to be due
to the fact that the distribution of photon arrival times becomes
spread out over an increasing number of time bins, and the
signals are therefore increasingly diverse between different
objects. However, there are orders of magnitude more infor-
mation collected at the detector when using fully resolved
space-time data. This is due to the much higher dimensionality
of the data which enables more diversity in the measurements
compared with only space or only time domain data. We also
find that there is still information beyond 1000�∗ (equivalent,
e.g., to 60 cm for a medium with tissuelike properties μ′

s =
0.09 cm−1 and μa = 16.5 cm−1[53]). However, these results
do not account for photon attenuation (Fig. 1 considers a fixed
number of 108 output photons for all TMFPs) or noise, which
is addressed in the following section.

Practical considerations. The fluence rate (�) of the dif-
fuse photons incident on the detector can be approximated by
[54,55]

� = �0
δ�

4π
exp [−√

3μa(μ′
s + μa)L], (5)

where δ�/4π is chosen, based on experimental considera-
tions [45], to be of the order of 10−5 and accounts for the
solid-angle fraction of light which reaches the lens of the
detector. A modest value of 10 mW power was used for
a 5 × 5 cm area, corresponding to �0 = 4 W/m2, which
is ∼3 orders of magnitude lower than the British standards
maximum permissible exposure for human skin [56]. Using
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Eq. (5), the number of transmitted photons Np can be cal-
culated (discretized by rounding to the nearest integer) in a
T = 60 s total acquisition time. To simulate noise, a Poisson
distribution is sampled for each bin where the mean is given
by its number of photons.

Mutual information between input and output. To dis-
ambiguate redundant repeated information included when
summing the entropy of every element of the measurement
in Fig. 1, we consider the mutual information between the
input pixel values and the measurements. Mutual information
between input variables xi ∈ X and output variables yi ∈ Y is
given by

MI (X ;Y ) = H (X ) + H (Y ) − H (X,Y ), (6)

where H (X,Y ) = −∑
j

∑
i p(xi, y j ) log2 p(xi, y j ) is the joint

entropy between the variables [49–51]. We consider the input
variables to be the pixels at the plane at which the hidden
absorbing objects are placed and the output variables are the
measurement pixels at the detector plane.

Independent channels are identified by calculating the im-
pulse response of the system Q ∈ Rm×n when scanning the
pixel-wise canonical basis at the plane of the absorbing hidden
object, where m is the number of elements at the output (i.e.,
number of pixels/bins depending on the domain) and n is
the number of elements at the input (i.e., pixels at absorption
plane).

The inner product of the normalized measured data R ∈
Rm×1 and the canonical impulse response basis calculates
the projection coefficients for every independent channel out-
put Y = 〈R, Q〉, where every column of Q is a unit vector.
A probability mass function P(Y ) of projection coefficients
is constructed by repeating for i = 1024 examples and bin-
ning the coefficients as binary high/low using the mean as a
threshold. This reduces every input pixel (xi) and projection
coefficient (yi) pair to be related by a binary symmetric chan-
nel [50] in which the probability of error when transmitting
a bit is introduced by cross-talk noise and is dependent on
the statistical fluctuation of every other channel by the pro-
cess of photon diffusion. The mutual information between the
distribution of input pixel values P(X ) and the projection co-
efficients P(Y ) for every channel is calculated independently
using Eq. (6), where H (X ) and H (Y ) are found by substitut-
ing the probability mass functions into Eq. (3). Figure 2(a)
shows the average mutual information per channel when using
measurements resolved in space compared with space-time
for noise-free and noisy data. There exists information be-
yond 200�∗ when considering both attenuation and shot noise
which, for typical tissue parameters such as μ′

s = 16.5 cm−1

and μa = 0.09 cm−1 [53], corresponds to ∼12 cm of tissue.
The limit of ∼200�∗ in this regime is restricted by the lack of
photons rather than the loss of information due to scattering.

We conducted an experiment to validate the assumptions
about the number of transmitted photons in simulation using a
phantom scattering material (see Supplemental Material [57]
for experimental details). The experimental results confirm
that the transmission of photons is possible at 226�∗ using a
10 mW source and 266�∗ for a 1 W source for the parameters
used in simulation and can be extended to 293�∗ and 333�∗,
respectively, for a system with greater solid angle of collection
(δ�/4π = 0.022).

FIG. 2. (a) The average mutual information per channel for in-
creasing transport mean free paths. Resolving measurements in both
space and time reduces cross-talk between pixels and preserves more
information through highly scattering materials. The same curves
including also noise are shown in dashed lines: There is still infor-
mation available beyond 200�∗. (b) The entropy of the pixels and
(c) the mutual information (in bits) between the input pixel values
and projection coefficients for space-time-resolved measurements of
1024 EMNIST examples through 50�∗.

Figure 2(a) also confirms that there is higher mutual infor-
mation in the space-time domain, i.e., that there is increased
diversity of the measurements compared with measuring in
only the space domain.

Figure 2(b) shows the entropy of the input pixels for the
1024 binary EMNIST images, i.e., it shows the areas/pixels
of high amounts of transmitted information. However, it is
the distribution of mutual information, shown in Fig. 2(c)
for the space-time domain data and a diffuser thickness of
50�∗ that indicates the most information-rich regions of the
measurements for a given set of images and physical config-
uration. The mutual information for each pixel/channel has
a distinct distribution with a maximum at the outer edges
and a minimum at the center where the highest number of
photons is typically measured. We interpret this distribution
to be due to the high cross-talk, i.e., photon blurring across
pixels that occurs in the center channels compared with the
lower cross-talk on the edge channels that are surrounded by
areas of zero-photon counts.

Condition of the inverse problem. Ultimately, the goal of
diffuse imaging is to retrieve images of objects. A typical
inverse problem will be ill-conditioned if the ratio between the
largest and smallest singular values of the forward operator A
(σmax and σmin, respectively) is large. Therefore, we use the
condition number κ = σmax/σmin as a measure of the stability
of the linear mapping and a quantification of the potential
inaccuracy when reconstructing images in the absence of any
priors [17,18,58,59]. The inverse problem of reconstructing
images from the measured data is solved as the pseudo-inverse
A−1 = V 	−1U T , where V , 	, and U are the left singular
vector, singular values, and right singular vector, respectively.
Figure 3(a) shows the condition numbers κ for the linear
forward operators A using the space, time, and space-time
resolved data. It is clear that using only time information is
highly ill-posed, irrespective of the number of TMFPs. How-
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FIG. 3. (a) The condition number (κ) of the forward linear oper-
ator between when using measurements resolved in space-time (•),
space (�), and time (×). As the thickness of a material increases,
the problem becomes more ill-conditioned, but using the fully re-
solved space-time data can give orders of magnitude of improvement.
(b) The reconstructed images of a target absorbing object through
50�∗ when using the different measurement domains. When adding
a small noise perturbation, space and time domain solutions are far
from the ground truth, whereas there is a resemblance of the target
when using space-time measurements.

ever, resolving the data in both space and time has advantages
in reducing the condition number by increasing orders of
magnitude (for increasing TMFPs) compared with using data
resolved only in space or time.

The impact on the conditioning of the problem is illustrated
in practical terms in Fig. 3(b) with image reconstructions. As
a treatable example that does not require regularization terms
nor any a priori information, we chose to reconstruct an image
from photons propagated through 50�∗. This is a nontrivial
example which is, however, still solvable using a direct linear
inversion and therefore does not require an in-depth analysis
of different inversion techniques, which is beyond the scope
of this Rapid Communication.

As can be seen, only the space-time data allow us to re-
construct an image that resembles the target object with both
space- and time-only data failing due to the presence of noise.
We underline that the purpose of these reconstructions is not
to reproduce good images using regularization but to illustrate
the improved conditioning of the problem at full rank when
resolving in both space and time.

The target image used in Fig. 3 is arbitrary, and the re-
constructed images are not an indication of the best possible
image retrieval solutions—these would need to be studied
separately in future work.

Conclusions. Using information theoretical analysis of a
typical diffuse imaging experiment, we show that it is possi-
ble to measure information about a hidden absorption object
through thicknesses >200�∗ using practical acquisition pa-
rameters, which corresponds to ∼12 cm of human tissue. Re-
markably, the limit of information transfer through diffusive
material in this regime is defined by the presence of photons at
the output plane, i.e., if there is a photon, there is information.
This apparently simple conclusion is nontrivial in the presence
of such strong diffusion, as one might expect the nondetermin-
istic path of a photon through the material, where direction is
randomized in many thousands of individual scattering events,
could completely erase spatial information about interactions
with an absorbing object inside the material.

We show that resolving photon counts in both space and
time preserves more mutual information and that even a rel-
atively small increase in information can directly improve
the ill-conditioned inverse problem of image reconstruction,
which results in more accurate solutions. Although tested in
the absence of any regularization, the improvements in image
retrieval will generally impact more complex inversion for-
mulations. When combined with the observation of how the
mutual information is distributed across the sensor at the out-
put, one can start to formulate optimization strategies for data
acquisition, by focusing only on those regions that contain the
most information about the actual object. This is similar in
spirit, for example, to recent work using machine learning to
learn how to position sensors for compressive sensing [59]
but instead, here, is guided by information theory rather than
neural network extraction of the statistical properties of the
measurement data.

It is beyond the scope of this Rapid Communication to
determine how best to use the information in the measure-
ments for image retrieval. Indeed, this Rapid Communication
is not about deciding the best image retrieval policy but
rather investigating the information limits for imaging which
is prerequisite for implementing any given imaging protocol.
This Rapid Communication therefore uncovers the poten-
tial for other bespoke studies to design information-rich
source/detector arrangements and create algorithms that will
enable the paradigm shift of imaging through diffusive media
beyond 100�∗.

Acknowledgments. The authors acknowledge funding from
Engineering and Physical Sciences Research Council (EP-
SRC, UK, Grant No. EP/T00097X/1). D.F. is supported
by the Royal Academy of Engineering under the Chairs in
Emerging Technologies scheme. J.R. is supported by the EP-
SRC Centre for Doctoral Training in Intelligent Sensing and
Measurement, Grant No. EP/L016753/1.

[1] A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and
A. Torricelli, New frontiers in time-domain diffuse optics, a
review, J Biomed. Opt. 21, 091310 (2016).

[2] R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M.
Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, MON-
STIR II: A 32-channel, multispectral, time-resolved optical

tomography system for neonatal brain imaging, Rev. Sci.
Instrum. 85, 053105 (2014).

[3] A. T. Eggebrecht, B. R. White, S. L. Ferradal, C. Chen, Y. Zhan,
A. Z. Snyder, H. Dehghani, and J. P. Culver, A quantitative
spatial comparison of high-density diffuse optical tomography
and fMRI cortical mapping, NeuroImage 61, 1120 (2012).

L022008-4

https://doi.org/10.1117/1.JBO.21.9.091310
https://doi.org/10.1063/1.4875593
https://doi.org/10.1016/j.neuroimage.2012.01.124


INFORMATION TRANSPORT AND LIMITS OF OPTICAL … PHYSICAL REVIEW RESEARCH 5, L022008 (2023)

[4] A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G.
Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli,
and A. Pifferi, Towards next-generation time-domain diffuse
optics for extreme depth penetration and sensitivity, Biomed.
Opt. Express 6, 1749 (2015).

[5] M. Alayed and M. Jamal Deen, Time-resolved diffuse optical
spectroscopy and imaging using solid-state detectors: Charac-
teristics, present status, and research challenges, Sensors 17,
2115 (2017).

[6] H. Zhao and R. J. Cooper, Review of recent progress toward
a fiberless, whole-scalp diffuse optical tomography system,
Neurophotonics 5, 1 (2017).

[7] Y. Yamada and S. Okawa, Diffuse optical tomography Present
status and its future, Opt. Rev. 21, 185 (2014).

[8] C. Dunsby and P. M.W. French, Techniques for depth-resolved
imaging through turbid media including coherence-gated imag-
ing, J. Phys. D 36, R207 (2003).

[9] A. P. Gibson and H. Dehghani, Diffuse optical imaging.
Phil. Trans. R. Soc. A. 367, 3055 (2009).

[10] M. J. Niedre, G. M. Turner, and V. Ntziachristos, Time-resolved
imaging of optical coefficients through murine chest cavities,
J Biomed. Opt. 11, 064017 (2006).

[11] V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance,
Concurrent MRI and diffuse optical tomography of breast after
indocyanine green enhancement, Proc. Natl. Acad. Sci. USA
97, 2767 (2000).

[12] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. Dimarzio, M.
Kilmer, R. J. Gaudette, and Q. Zhang, Imaging the body with
diffuse optical tomography, IEEE Signal Process. Mag. 18, 57
(2001).

[13] Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A.
Weitz, and P. Sheng, Wave transport in random media: The
ballistic to diffusive transition, Phys. Rev. E 60, 4843 (1999).

[14] K. M. Yoo, F. Liu, and R. R. Alfano, When Does the Diffusion
Approximation Fail to Describe Photon Transport in Random
Media? Phys. Rev. Lett. 64, 2647 (1990).

[15] H. Dehghani, S. Sri Nivasan, B. W. Pogue, and A. Gibson, Nu-
merical modelling and image reconstruction in diffuse optical
tomography, Philos. Trans. R. Soc. A 367, 3073 (2009).

[16] J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos,
Experimental determination of photon propagation in highly
absorbing and scattering media, J. Opt. Soc. Am. A 22, 546
(2005).

[17] P. C. Hansen, Discrete Inverse Problems (Society for Industrial
and Applied Mathematics, Philadelphia, 2010).

[18] F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue,
Early-photon fluorescence tomography: Spatial resolution im-
provements and noise stability considerations, J. Opt. Soc. Am.
A 26, 1444 (2009).

[19] S. R. Arridge, Optical tomography in medical imaging, Inverse
Probl. 15, R41 (1999).

[20] S. R. Arridge, Methods in diffuse optical imaging, Trans. R.
Soc. A 369, 4558 (2011).

[21] J. C. Hebden and D. T. Delpy, Enhanced time-resolved imaging
with a diffusion model of photon transport, Opt. Lett. 19, 311
(1994).

[22] W. Cai, B. B. Das, F. Liu, M. Zevallos, M. Lax, and R. R.
Alfano, Time-resolved optical diffusion tomographic image re-
construction in highly scattering turbid media, Proc. Natl. Acad.
Sci. USA 93, 13561 (1996).

[23] Y. Xu, N. Iftimia, H. Jiang, L. Lyndon Key, and M. B. Bolster,
Three-dimensional diffuse optical tomography of bones and
joints, J Biomed. Opt. 7, 88 (2002).

[24] S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh,
and J. C. Schotland, Imaging complex structures with diffuse
light, Opt. Express 16, 5048 (2008).

[25] G. Satat, B. Heshmat, D. Raviv, and R. Raskar, All photons
imaging through volumetric scattering, Sci. Rep. 6, 33946
(2016).

[26] F. Tonolini, J. Radford, A. Turpin, D. Faccio, and R. Murray-
Smith, Variational inference for computational imaging inverse
problems, J. Mach. Learn. Res. 21, 146 (2020).

[27] F. Schiffers, L. Fiske, P. Ruiz, A. K. Katsaggelos, and O.
Cossairt, Imaging through Scattering Media with a Learning
Based Prior, Proc. IS&T Int’l. Symp. on Electronic Imaging:
Computational Imaging XVIII 32, 306-1 (2020).

[28] J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, S. I.
Lee, E. Y. Chae, H. H. Kim, Y. M. Bae et al., Deep learning
diffuse optical tomography, IEEE Trans. Med. Imaging 39, 877
(2020).

[29] J. Han, S. Zhu, E. Guo, J. Gu, and L. Bai, Imaging through
unknown scattering media based on physics-informed learning,
Photonics Res. 9, 210 (2021).

[30] A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson,
Y. Wiaux, and D. Faccio, Computational time-of-flight diffuse
optical tomography, Nat. Photonics 13, 575 (2019).

[31] L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, Ballistic
2-D imaging through scattering walls using an ultrafast optical
Kerr gate, Science 253, 769 (1991).

[32] V. Gopal, S. Mujumdar, H. Ramachandran, and A. K.
Sood, Imaging in turbid media using quasi-ballistic photons,
Opt. Commun. 170, 331 (1999).

[33] S. Woo, M. Kang, C. Yoon, T. D. Yang, Y. Choi, and W. Choi,
Three-dimensional imaging of macroscopic objects hidden be-
hind scattering media using time-gated aperture synthesis,
Opt. Express 25, 32722 (2017).

[34] A. V. Kanaev, A. T. Watnik, D. F. Gardner, C. Metzler, K. P.
Judd, P. Lebow, K. M. Novak, and J. R. Lindle, Imaging through
extreme scattering in extended dynamic media, Opt. Lett. 43,
3088 (2018).

[35] M. G. Tanner, T. R. Choudhary, T. H. Craven, B. Mills, M.
Bradley, R. K. Henderson, K. Dhaliwal, and R. R. Thomson,
Ballistic and snake photon imaging for locating optical endomi-
croscopy fibres, Biomed. Opt. Express 8, 4077 (2017).

[36] B. Brezner, S. Cahen, Z. Glasser, S. Sternklar, and E. Granot,
Ballistic imaging of biological media with collimated illumi-
nation and focal plane detection, J Biomed. Opt. 20, 076006
(2015).

[37] S. Maruca, P. Rehain, Y. M. Sua, S. Zhu, and Y. Huang,
Non-invasive single photon imaging through strongly scattering
media, Opt. Express 29, 9981 (2021).

[38] K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S.
Feld, Optical computed tomography in a turbid medium using
early arriving photons, J. Biomed. Opt. 5, 144 (2000).

[39] G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and
V. Ntziachristos, Complete-angle projection diffuse optical
tomography by use of early photons, Opt. Lett. 30, 409
(2005).

[40] G. M. Turner, A. Soubret, and V. Ntziachristos, Inversion with
early photons, Med. Phys. 34, 1405 (2007).

L022008-5

https://doi.org/10.1364/BOE.6.001749
https://doi.org/10.3390/s17092115
https://doi.org/10.1117/1.NPh.5.1.011012
https://doi.org/10.1007/s10043-014-0028-7
https://doi.org/10.1088/0022-3727/36/14/201
https://doi.org/10.1098/rsta.2009.0080
https://doi.org/10.1117/1.2400702
https://doi.org/10.1073/pnas.040570597
https://doi.org/10.1109/79.962278
https://doi.org/10.1103/PhysRevE.60.4843
https://doi.org/10.1103/PhysRevLett.64.2647
https://doi.org/10.1098/rsta.2009.0090
https://doi.org/10.1364/JOSAA.22.000546
https://doi.org/10.1364/JOSAA.26.001444
https://doi.org/10.1088/0266-5611/15/2/022
https://doi.org/10.1098/rsta.2011.0311
https://doi.org/10.1364/OL.19.000311
https://doi.org/10.1073/pnas.93.24.13561
https://doi.org/10.1117/1.1427336
https://doi.org/10.1364/OE.16.005048
https://doi.org/10.1038/srep33946
https://doi.org/10.2352/ISSN.2470-1173.2020.14.COIMG-306
https://doi.org/10.1109/TMI.2019.2936522
https://doi.org/10.1364/prj.416551
https://doi.org/10.1038/s41566-019-0439-x
https://doi.org/10.1126/science.253.5021.769
https://doi.org/10.1016/S0030-4018(99)00468-X
https://doi.org/10.1364/OE.25.032722
https://doi.org/10.1364/OL.43.003088
https://doi.org/10.1364/BOE.8.004077
https://doi.org/10.1117/1.JBO.20.7.076006
https://doi.org/10.1364/OE.417299
https://doi.org/10.1117/1.429981
https://doi.org/10.1364/OL.30.000409
https://doi.org/10.1118/1.2437103


JACK RADFORD AND DANIELE FACCIO PHYSICAL REVIEW RESEARCH 5, L022008 (2023)

[41] M. J. Niedre, R. H. De Kleine, E. Aikawa, D. G. Kirsch,
R. Weissleder, and V. Ntziachristos, Early photon tomography
allows fluorescence detection of lung carcinomas and disease
progression in mice in vivo, Proc. Natl. Acad. Sci. USA 105,
19126 (2008).

[42] B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, Early-
photon fluorescence tomography of a heterogeneous mouse
model with the telegraph equation, Appl. Opt. 50, 5397 (2011).

[43] J. Pichette, J. B. Domínguez, and Y. Bérubé-Lauzière, Time-
domain geometrical localization of point-like fluorescence
inclusions in turbid media with early photon arrival times, Appl.
Opt. 52, 5985 (2013).

[44] E. P. McShane, H. K. Chandrasekharan, A. Kufcsák, N.
Finlayson, A. T. Erdogan, R. K. Henderson, K. Dhaliwal, R. R.
Thomson, and M. G. Tanner, High resolution TCSPC imaging
of diffuse light with a one-dimensional SPAD array scanning
system, Opt. Express 30, 27926 (2022).

[45] J. Radford, A. Lyons, F. Tonolini, and D. Faccio, Role of late
photons in diffuse optical imaging, Opt. Express 28, 29486
(2020).

[46] P. Latimer, Light scattering, data inversion, and information
theory, J. Colloid Interface Sci. 39, 497 (1972).

[47] N. Byrnes and M. R. Foreman, Universal bounds for imaging in
scattering media, New J. Phys. 22, 083023 (2020).

[48] M. S. Patterson, B. Chance, and B. C. Wilson, Time resolved
reflectance and transmittance for the noninvasive measurement
of tissue optical properties, Appl. Opt. 28, 2331 (1989).

[49] C. E. Shannon, A Mathematical Theory of Communication,
Bell Syst. Tech. J. 27, 623 (1948).

[50] D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms (Cambridge University Press, Cambridge, 2003).

[51] T. M. Cover and J. A. Thomas, Elements of Information Theory
(John Wiley & Sons, Inc., Hoboken, 2006).

[52] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, EMNIST:
Extending MNIST to handwritten letters, in Proceedings of the
International Joint Conference on Neural Networks, Vol. 2017-
May (IEEE, Anchorage, 2017) pp. 2921.

[53] S. L. Jacques, Optical properties of biological tissues: A review,
Phys. Med. Biol. 58, R37 (2013).

[54] D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R.
Alfano, Short wavelength infrared optical windows for eval-
uation of benign and malignant tissues, J. Biomed. Opt. 22,
045002 (2017).

[55] A. Yaroshevsky, Z. Glasser, E. Granot, and S. Sternklar, Tran-
sition from the ballistic to the diffusive regime in a turbid
medium, Opt. Lett. 36, 1395 (2011).

[56] British Standards Institution, Safety of Laser Products—Part 14:
A User’s Guide, Tech. Rep., London (2004).

[57] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L022008 for details of experimen-
tal procedure and results showing the number of photons
transmitted for increasing TMFP lengths, a discussion of de-
termining the rank of forward operators used to produce
Fig. 3, and additional image reconstructions using basic
regularization.

[58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University Press, Cambridge, 2007), p. 795.

[59] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L.
Brunton, Data-driven sparse sensor placement for reconstruc-
tion: Demonstrating the benefits of exploiting known patterns,
IEEE Control Systems 38, 63 (2018).

L022008-6

https://doi.org/10.1073/pnas.0804798105
https://doi.org/10.1364/AO.50.005397
https://doi.org/10.1364/AO.52.005985
https://doi.org/10.1364/OE.461334
https://doi.org/10.1364/OE.402503
https://doi.org/10.1016/0021-9797(72)90058-6
https://doi.org/10.1088/1367-2630/aba063
https://doi.org/10.1364/AO.28.002331
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1088/0031-9155/58/11/R37
https://doi.org/10.1117/1.JBO.22.4.045002
https://doi.org/10.1364/OL.36.001395
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L022008
https://doi.org/10.1109/MCS.2018.2810460

