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Fluorescence lifetime imaging is an important tool in bioimaging that allows one
to detect subtle changes in cell dynamics and their environment. Most time-domain
approaches currently involve scanning a single illumination point across the sample,
which can make imaging dynamic scenes challenging, while single-shot “rapid
lifetime determination” can suffer from large uncertainties when the lifetime is not
appropriately sampled. Here, we propose a time-folded fluorescence lifetime imaging
microscopy (TFFLIM) approach, whereby a time-folding cavity provides multiple
spatially sheared replicas of the lifetime, each shifted temporally with respect to a fixed
time gate. This provides a robust, single-shot FLIM approach that we experimentally
validate across a broad lifetime range on fluorescent beads and Convallaria samples.

FLIM | single-shot | time-folded cavity | physics-inspired neural network

Fluorescence lifetime imaging quantifies the time-dependent properties of fluorophores
(1–3) and is typically employed for imaging biological phenomena. FLIM measurements
are utilized to extract information about the local environment of the fluorophores,
such as concentration of oxygen, pH, as well as to reveal protein–protein interactions,
changes in membrane tension, etc. (3–7). Despite the fact that FLIM has been recently
shown to benefit clinical diagnostics (8–10), wider adoption of the technique in clinical
settings is still hindered due to limited field of view (FOV) and slow acquisition speeds
of commercial FLIM systems (10). The main bottleneck in conventional systems is
the point-scanning image acquisition, which prohibits the acquisition of instantaneous
full FOV information. To tackle this, recent innovation has focused on improving the
acquisition speeds of confocal scanning systems, in particular with resonant scanning and
spinning-disc systems (11) in conjunction with detection approaches based, for example,
on photomultiplier tubes (PMT) with time-correlated single photon counting electronics
(TCSPC). Nonetheless, if dynamic scenes and large FOVs are desired, or plane-
illumination schemes like light-sheet imaging or total internal reflection fluorescence
(TIRF) microscopy are used, wide-field systems would be the solution.

Wide-field single-photon avalanche diode (SPAD) arrays have gained popularity both
in TCSPC (12) and time-gated operation (13, 14). Wide-field FLIM systems have
also been shown that utilize microchannel-plate gated optical intensifiers in addition to
arrayed PMT detectors (15) or charge-coupled device (CCD) cameras (16, 17). Such
systems benefit from a high-fill factor and low noise and were designed for low-light
imaging applications. The fluorescence decay information in such systems is extracted by
scanning a gate that samples different temporal sections of the decay. In the extreme case
where only 2 gates are used, the acquired data lends itself to relatively fast and simple
lifetime recovery techniques referred to as Rapid Lifetime Determination (RLD) (18).

Recently, variations of RLD have been proposed that bypass scanning a gate, including
a novel wide-field FLIM system utilizing Pockels cells and a 4f optical cavity (19),
which creates a time-integrated measurement in a single snapshot image. The cost of
this approach is that 16 replicas of the FOV are imaged onto the detector, therefore
potentially limiting total FOV or resolution.

Attempts have been made at using a single, gated camera in combination with
temporal streaking of the fluorescent signal in order to determine its lifetime. For example,
combining compressed ultrafast photography (CUP) (20) with a dual camera detection
scheme has been demonstrated to allow wide-field streaked imaging (21). However, CUP
and related approaches rely on streak cameras and leave the need for setups with simpler
or cheaper components. Heshmat et al. have also shown that it is possible to retrieve the
temporal evolution of systems that evolve at the picosecond-to-nanosecond scale with a
time-folding approach whereby multiple time-delayed discrete replicas of a laser pulse
result from its periodic optical round trips in an optical cavity (22).
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We propose a FLIM that sits in between the discrete sampling
of RLD and the continuous streaking of CUP-based approaches.
We use a purely optical, time-folded cavity to shear a fluorescent
signal in space and time and replicate it within our field of
view. This approach retains most of the field of view, while
also producing multiple, discrete time-gated samples of the
fluorescent signal. These samples act as a series of parallel
measurements, similar to taking multiple RLD acquisitions of
the same sample with different gate positions at the same time.

Lifetime images are then retrieved by an inverse retrieval
scheme and a physics-inspired neural network, for predicting
lifetime robustly and quickly, respectively. This approach is
validated on various samples over a broad range of lifetimes.

Results

Time-Folded Cavity. The proposed experimental layout is shown
in Fig. 1A. A uniform sample of fluorescent molecules will decay
according to an exponential probability density function. Our
optical cavity replicates this decay signal and retards each replica
in time by ∼0.59 ns, as shown in Fig. 1B. A tilted mirror M ′
in the cavity adds an angular offset to the signal as it leaves
the cavity. The replicas pass through a lens; hence, this angular
offset becomes a lateral translation on the iCCD. Consequently,
the iCCD intensifies different portions of the signal on different
pixels.

The noise-free time-folded lifetime signal at a pixel si,j on the
iCCD is

si,j = r0
∫

G(t)Ai,je
t0−t
τi,j H(t − t0)dt

+ r1
∫

G(t)Ai,j−1ye
t0+tc−t
τi,j−y H(t − t0 − tc)dt

+ ...

+ rN
∫

G(t)Ai,j−Nye
t0+Ntc−t
τi,j−Ny H(t − t0 − Ntc)dt, [1]

where rn for n ∈ 0, 1, ..., N is a constant, which represents
the power transmitted in the n-th round trip through the
beamsplitter. The splitting ratio at the excitation wavelength
was experimentally measured as 51.5:48.5. G(t) is the temporal
profile of the time-gated intensifier on the iCCD camera. A is
the amplitude of the decay, and τ is the corresponding lifetime.
H(t − α) is the Heaviside step function. The N terms represent
N round trips; we determined N = 5 to be a good cutoff point,

i.e., further round trips had a poor signal-to-noise ratio (SNR) or
were not visible. The image shear, measured in pixels per round
trip, is y. At each round trip, the replicas are also delayed by the
cavity round trip time, tc .

In parallel to the iCCD acquisition, a CMOS camera also
acquires an image where each CMOS pixel i, j records an intensity

qi,j = k
∫

Ai,je
t0−t
τi,j dt, [2]

which corresponds to the time-integrated fluorescence recorded
at each pixel. Here, k is a factor that represents the amplitude
ratio of the measurement obtained on the iCCD and CMOS
cameras. This arises due to the product of the splitting ratio of
BS1, the pixel sizes, and fill factors of the two cameras, and their
respective quantum yields at the given emission wavelength. As
such, it is constant over our experiments.

Uncertainty Analysis. We assess the viability of our imaging
modality by analyzing the lower bound of our prediction
uncertainty. This lower bound is found by considering a Bayesian
model and by assuming that the noise in the sCMOS is negligible
compared to the iCCD. We then calculate the probability of a
true sample lifetime τ given a lifetime estimate τ̂ obtained from
a set of noisy iCCD measurements ŝ (i.e., ŝ(τ )):

p(τ |τ̂ ) ≡ p(τ |ŝ) =
p(ŝ|τ )p(τ )

p(ŝ)
. [3]

This formalism allows us to derive lifetime uncertainty from the
well-studied noise properties of an iCCD; Methods for details.

We evaluate the uncertainty lower bound of our system for
four different example photon budgets in Fig. 2A. With 5,000
photons (incident on the iCCD), our lifetime prediction error is
less than 10% for lifetimes between 0.36 and 2.6 ns. For a photon
budget of 50,000, the same is true for over 2 orders of magnitude
of lifetimes, from 0.1 to 10 ns. In the presence of thermal noise
or added Poissonian noise on the CMOS, we expect the same
overall trend in lifetime uncertainties, at slightly higher values.

Data Analysis. We propose two methods to retrieve the lifetime
map. One is inverse retrieval (IR) with gradient descent,
which is computationally slow but tractable. The other is a
physics-inspired convolutional neural network (CNN) trained
on simulated data; this method is fast yet intractable.

A

BS1 BS2 

Pupil relay
M' M

M

Image 2
(iCCD)

Image 1
(CMOS)

Objective

Dichroic BS

Pulsed laser

Sample

B

Fig. 1. (A) The system consists of an objective with epifluorescence illumination, 2 cameras (standard CMOS, and a gated iCCD), and a time-folding optical
cavity assembled from a beamsplitter (BS′) and 3 mirrors, 1 of which (M′) controls the direction of the replicas and their separation in the image plane. A 1:1
telescope relays the pupil of the objective into the cavity to minimize vignetting and cropping of the FOV. (B) The optical cavity creates replicas of the original
signal with an added time lag, caused by the cavity’s round trip time. Each replica is translated spatially by M′, and its amplitude shrinks according to the splitting
ratio of BS2. The iCCD signal measured from each replica is represented by the area of the shaded region under the curves; this area is the dot product of the
exponential decay and the gate, shown truncated here for visualization; SI Appendix for the full gate shape.
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((11,1),10)

τ =1ns
τ =3ns

  (ii) iCCD input (220,220)(i) CMOS input (220,220) +

0         1         2         3        4     
lifetime (ns)

. . .

B

Loss: 
CMOS ∙ (y - ypred)2

x256

Conc. Conv2D 
[(256, 120, 220),
((11,1),10)]

Conv2D 
[(64, 120, 220),
((11,1),10),
zero padding]

Conv2D 
[(16, 120, 220),
((11,1),10),
zero padding]

Conv2D 
[(1, 120, 220),
((3,3),1),
zero padding]

A

Analytical uncertainty 
lower bound

Fig. 2. (A) We show the lower bound on the relative uncertainty of the lifetime prediction (calculated using Eq. 3) for photon budgets of 500, 5,000, 50k, and
500k photons (incident on the iCCD). Similarly to RLD (18), our measurements have minimal uncertainty around some lifetime domain, which can be controlled
by the position of the gate with respect to the excitation pulse, and the time delay between each sheared image. Our system is optimized to measure ≈ 1 ns
signals. (B) Outline of the CNN. (i and ii) The CMOS and iCCD images are shown. They have two lifetime populations: a small sphere with a 1-ns lifetime and
a long, thin structure with a 3-ns lifetime. The lifetime of the sample affects the relative intensities of subsequent replicas on the iCCD, with longer lifetime
samples losing more intensity between one replica and the next. The dilated Conv2D kernel is shown in yellow; a dilation rate of 10 means that only every 10th
kernel value is nonzero, creating a sparse receptive field. The inputs are concatenated, then processed by 3 Conv2D layers with kernel sizes of (11 × 1) and
dilation rates of 10. The first hidden layer is shown; it consists of 256 feature maps. Since the inputs are not zero-padded, the size of the feature map decreases
compared to the inputs. The output is a lifetime prediction. Training loss is mean squared error weighted by the corresponding intensity values.

The IR pipeline optimizes our guess of the lifetime map
by iteratively computing the expected iCCD signal for a given
lifetime map and calculating the gradient of mean squared error
between this expected iCCD signal and the measurement with
respect to the lifetime (called the data fidelity term), with gradient
descent to update the lifetime guess. This process is analytically
tractable. It can however stagnate in local minima of the mean
squared error landscape. Therefore, we constrain the IR via an L2-
norm regularizer on the lifetime map. Our optimization problem
searches for the optimal solution τ̂ :

τ̂ = arg min
τ

C(τ ), where

C(τ ) = ‖P(τ )− ŝ‖2 + α‖τ‖22
subject to τ ≥ 0.

[4]

The first term of the cost function C(τ ) represents the data
fidelity term, and the second term represents the regularizer. The
inverse retrieval is thus a nonlinear ridge regression problem.

Our CNN algorithm, shown in Fig. 2B, is trained on a
set of synthetic iCCD and CMOS image pairs. It uses 2D
convolutional (Conv2D) layers with dilated kernels. Dilation
ensures explicit causal dependence of the feature maps on the
inputs: the sparse receptive field of the kernel means information
is drawn only from pixels with causal dependence in the forward
model, minimizing overfitting and matching the physics of the
problem. Since the convolutional kernels maintain this dilated
shape until the penultimate layer, this causal dependence persists
until the deeper layers. The final Conv2D layer’s (3× 3) kernels
mimic sliding window binning, commonly used in lifetime fitting
to increase the SNR. Training lifetime labels are in the range of
0.1 to 8 ns. For more details on the IR and the CNN, Methods.

We apply both IR and CNN to predict the lifetimes of the
center of the field of view. In this region, we have information
about all the replicas that enter and leave the field of view,
allowing us to predict lifetimes with minimal uncertainty.

ValidationonBeads. We prepared samples of fluorescent beads of
2 μm and 4 μm diameters with corresponding expected lifetimes

of 2.1 ns and 4 ns measured on a separate FLIM system (Methods
for details). We show results for an FOV containing several such
beads in Fig. 3. Exposure times were 1 s.

The 2- and 4-μm beads show bimodal lifetime distributions
and are clearly distinguishable by their lifetimes. Moreover, both
the neural network and IR yield very similar lifetime distribu-
tions, cross-validating one another. We fitted bimodal skewed
Gaussian distributions to intensity-weighted (the weighting is
used to remove dark pixels) histograms of the pixel values.
For the CNN, peak values of 2.0 and 4.2 ns with standard
deviations of 0.1 and 0.7 ns were obtained, for the small and
large beads, respectively. IR yielded values of 2.0 ± 0.0 and

iCCD

CNN prediction

CMOS

Inverse retrieval Inverse retrieval histogram

CNN prediction histogram

BA

C

E

D

F

Fig. 3. (A and B) We show a mixture of 2 and 4 μm beads on the CMOS
and iCCD. (C and D) The CNN predicts the two lifetime modes present in the
sample clearly. The predicted lifetime distribution is fitted with a bimodal
skewed Gaussian, yielding populations of 2.0 ± 0.1 and 4.2 ± 0.7 ns. (E and F )
The IR predicts similar lifetimes, distributed as 2.0 ± 0.0 and 3.6 ± 0.7 ns.
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A B

25μm

(i) (ii)

Inverse retrieval(iv) CNN prediction(iii) Inverse retrieval(iv)

CMOS(i) (ii)

25μm

CNN prediction(iii)

Fig. 4. Lifetime map of Convallaria stained with acridine orange. The CNN and inverse retrieval show remarkably similar lifetime patterns, cross-validating
one another. The CNN output is a little smoother, while the inverse retrieval has sharper edges but also more granularity; this can be attributed to the final layer
of the CNN acting as a form of (learned) sliding window averaging. Reconstructions were intensity-weighted, as the regions in between cell walls expressed
low signal. (A), (i and ii) The CMOS and iCCD images of the first region of interest. (iii and iv) The global lifetime distributions were 1.30 ± 0.09 and 1.29 ± 0.11
ns for the CNN and IR, respectively. (B), (i and ii) CMOS and iCCD images of the second region of interest. (iii and iv) In the second region of interest, the global
lifetime distributions were 1.34±0.11 and 1.30±0.15 ns for the CNN and IR, respectively. We note that the artifacts produced by the inverse retrieval are largely
suppressed by the CNN’s final layer, but sharp edges and high-frequency lifetime variations are also smoothed.

3.6 ± 0.7 ns, respectively. These values are in good agreement
with the expected lifetimes. The prediction uncertainties of the
longer lifetime beads are greater than that of the shorter lifetime
ones, as expected from Fig. 2A.

Testing on Cells. We then tested our model on Convallaria cells
stained with acridine orange. Mean lifetimes of 1.30 and 1.29
ns for region-of-interest (ROI) 1 (Fig. 4A) were obtained with
the CNN and IR, respectively. In ROI 2 (Fig. 4B), the mean
lifetimes predicted by the CNN and IR were 1.34 and 1.30
ns, respectively. These distributions closely match our previously
published results of 1.29±0.49 ns (13) on the same sample type.
Moreover, the samples do not have a flat lifetime, and the CNN
and IR agree on the local lifetime pattern, cross-validating one
another. This demonstrates that even though these samples are
not spatially sparse like the beads (thus, their time-folded replicas
on the iCCD overlap), TFFLIM is capable of predicting lifetimes
with good fidelity.

Discussion

We have demonstrated a method for obtaining fluorescence
lifetime images using a time-folded optical cavity in conjunction
with an iCCD camera and a CMOS camera. We derive an
inverse modeling approach and designed a physics-inspired
neural network architecture, thus predicting sample lifetimes for
this imaging scheme. TFFLIM samples the signal for different
delays, mimicking parallel time-gated measurements, which are
acquired in a single snapshot. We validated our approach on
beads and tested it on biological samples, obtaining lifetimes
in the expected ranges for both. We mathematically demonstrate
that the cavity delivers a relatively uniform prediction uncertainty
for a wide lifetime range.

The simultaneous spatial and temporal shearing implies that all
the information required for retrieving the final lifetime image
is acquired in a single measurement. This yields an advantage
over scanning time-gated approaches, which sample the signal
sequentially for various gate positions. Finally, since we acquire
multiple time-gated measurements with different gate positions

in parallel, our method could theoretically be expanded to single-
shot multiexponential retrieval, analogously to multiexponential
RLD (23).

Materials and Methods

Setup. The cavity was assembled from a 50:50 beamsplitter cube (Thorlabs
CCM1-BS013/M), tworight-angleturningprismmirrors (ThorlabsCCM1-E02/M),
an elliptical mirror mounted with a length-wise extended 3D printed mirror
mount (Thorlabs H45E1) on a kinematic mount (Thorlabs KM100CP/M) allowing
for fine adjustment of replica separation and angle. The imaging optics consisted
of a pair of f = 250-mm achromatic doublets (Thorlabs AC254-250-A-ML) which
relayed the pupil of a Zeiss 40× 0.75NA microscope objective. Replicas were
imaged onto an iCCD (Andor iStar 334T) with an f = 500-mm achromatic doublet
(Thorlabs AC254-500-A-ML).

The replica separation and direction can be found experimentally from the 2D
Fourier transform of the iCCD image. The shear direction (and tilt from the desired
direction) of the replicas is important as the reconstruction algorithm implicitly
assumes that this direction is known. Small deviations from the expected shear
direction (even of a few degrees) can lead to artifacts in the form of bands of
higher lifetimes that can become very evident for larger angular deviations. The
2D Fourier transform allows us to precisely measure tilt in the shear direction,
as well as the replica separation, and subsequently allows the iCCD image to
be corrected before processing. In SI Appendix, we show examples of sheared
images with and without a tilt alongside the relative reconstructions.

A 30:70 beamsplitter cube (Thorlabs BS019) before the pupil relay provided
the imaging path for the CMOS camera (Thorlabs CS895MU) with f = 200-mm
achromatic doublet (Thorlabs AC254-200-A-ML). A fluorescein isothiocyanate
(FITC) filter set was used for fluorescence imaging (Thorlabs MDF-FITC), and
Horiba DeltaDiode DD-485L provided the pulsed illumination for fluorescence
excitation. The laser diode emits at 470 nm with a 1-MHz repetition rate; the
iCCD was triggered at 500 kHz (on every second pulse).

Samples. The fluorescent bead samples were prepared by drop-casting
isopropanol-diluted bead solution on a microscope slide. Once dried, the beads
were washed once with isopropanol to wash away weakly adhered beads. Both
2 μm (Merck, L4530) and 4 μm (Bangs Laboratories Inc., FSDG006) diameter
beads were prepared in the same fashion. Acridine orange–stained Convallaria
samples were obtained from Johannes Lieder GmbH & Co. KG (Catalog number
As3212). In literature, Yellow-Green dye (2 μm Merck beads) has been reported
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with lifetimes of 2.1 ns (24). Dragon Green dye (4 μm Bangs Laboratory beads)
excited at 485 nm has been measured to fluoresce with a 3.4-ns (25) and 4-ns
lifetime (26). We validated the lifetime of our samples using a SPAD array
(Horiba, FLIMERA); SI Appendix for details.

Inverse Retrieval. Our forward model is based on Eqs.1 and2. Let us represent
as P the mathematical function that takes as its input the lifetime map τ and
the amplitude values A and performs the integration followed by the shifted
sum of the replicas as mentioned in Eq. 1; then, we can concisely write the
measurement registered on the iCCD sensor as

ŝ = P(τ , A) + n, [5]

where n is measurement noise. Integrating Eq. 2 for t from t0 to ∞ yields
qi,j=kAi,jτi,j. This can be rearranged asAi,j=

qi,j
kτi,j

, i.e., the CMOS measurement

is used to evaluate the amplitude of decay Ai,j, which is then fed to the
inverse retrieval algorithm. For this, the factor k in Eq. 2 has been calibrated
experimentally and is a one-time calibration for the system. The lifetime values,
τ , thus become the only unknown variables of function P henceforth. The cost
function we optimize is written in Eq. 4:

τ̂ = arg min
τ

C(τ ), where

C(τ ) = ‖P(τ )− ŝ‖2 + α‖τ‖2
2

subject to τ ≥ 0.

[6]

We initiate the optimization with a random guess for the lifetime map τ .
The algorithm then uses gradient descent to reach the optimal solution for the
variables τ . If the lifetime map at some iteration n is represented by τ (n), then
the solution at the next iteration progresses as

τ (n+1) = τ (n) − β[∇τ C(τ )]τ=τ (n) . [7]

Here, β is the step size in the negative gradient direction and is determined in
each iteration by backtracking line search (27). ∇τ C(τ ) is the gradient of the
cost function with respect to τ :

∇τ C(τ ) =
(P(τ )− ŝ)
‖P(τ )− ŝ‖2

∂P(τ )
∂τ

+ 2α
∑
i,j

τi,j. [8]

We evaluate the above partial derivative by considering the discrete version of
Eq. 1, giving

∂P(τ )
∂τ

∣∣∣∣
i,j

=− f1
∑
t
G(t)qi,je

t0−t
τi,j

 t0 − t

τ 3
i,j

+
1

τ 2
i,j


− f2

∑
t
G(t)qi,j−ye

t0+tc−t
τi,j−y

 t0 + tc − t

τ 3
i,j−y

+
1

τ 2
i,j−y


− ...

− f6
∑
t
G(t)qi,j−5ye

t0+5tc−t
τi,j−5y

 t0 + 5tc − t

τ 3
i,j−5y

+
1

τ 2
i,j−5y

 .
[9]

We use the same notation as in Eqs. 1 and 2.

Convolutional Neural Network. We developed a CNN to retrieve experi-
mental lifetime maps, as an alternative, faster approach to the numerical
inversion method described above. The network uses two inputs—the iCCD
image and the CMOS image—to predict the lifetime of the sample. We trained
the network on a fully synthetic dataset, generated with the forward model in
Eq. 5, with model and noise parameters obtained from experimental data. A
set of 10,000 270 × 220 pixel intensity and lifetime seed pairs were used to

generate 10,000 220 × 220 single-shot images (the seed images are larger
because the single-shot images can have replicas originating from outside
their FOV).

The CNN architecture is designed to match the physical parameters of the
system and to process the data efficiently. The two inputs are concatenated at
the very start. This is because the CMOS data alone cannot provide insight into
the lifetime. Therefore, feature extraction layers are superfluous for the CMOS.
Similarly, the CMOS constrains the information content of the iCCD.

After concatenation, 256 dilated convolutional kernels are applied, without
zero-padding the inputs. Each kernel’s size is (11,1), due to the assumption of
6 replicas, centering the kernel on the 0th replica, with a dilation rate of 10 to
match the pixel separation of replicas, creating a sparse receptive field of 101
pixels.

After the first convolutional layer, a second convolutional layer that outputs
64 feature maps is used and then a third that outputs 16 feature maps. The kernel
sizes are still (11,1) with dilation rates of 10. These first three convolutional layers
perform what amounts to blind deconvolution, doing much of the processing.
Finally, 3× 3 kernels output the final lifetime map. These 3× 3 kernels help
make the predictions smooth in a local 3 × 3 neighborhood, informing each
pixel of the lifetime of its neighbors. This is equivalent to a sliding window
binning strategy, except that the window does not use a simple sum, but rather
a learned kernel. We find that this reduces image artifacts that might be present
if each pixel were treated independently. The output feature map contains the
lifetime prediction. We also experimented with predicting lifetime from the
iCCD image only, discarding the CMOS image; SI Appendix for details.

The network is trained on 7,500 image triplets, validated on 1,250 and tested
on 1,250. The training loss we used was mean squared error (MSE) weighted by
intensity:

L =
1

N× M

∑
i

∑
j

qi,j(τ̂i,j − τi,j)
2, [10]

where N and M are the height and width of the ROI, q is the CMOS field of
view corresponding to the lifetime label τ , and τ̂ is the predicted lifetime
map. The motivation for scaling MSE is based on the variance of an unbiased
lifetime predictor, which is inversely proportional to the total photon count.
When measured photon counts are higher, SNR is higher too, and lifetime
prediction can be expected to have lower variance; thus, any prediction error
has a large significance since it cannot be attributed to a poor SNR and instead
indicates poor fitting.

In summary, there are 3 physics-inspired aspects of this neural network.
First, the usage of dilated kernels in our convolutional layers mimics the causal
relationship between the lifetime prediction at a given pixel and the iCCD
pixels above and below this target pixel, as described earlier. Second, the final
layer is formed of 3×3 kernels, paralleling the sliding window binning strategy
commonly used for increasing SNR in noisy measurement. Thirdly, our intensity-
weighted mean squared error training loss simulates the variance of an unbiased
lifetime predictor, which is inversely proportional to total fluorescent intensity
due to the SNR of Poisson distributed photons from the sample (28).

Backpropagation was implemented via adaptive momentum (Adam), using
an exponentially decaying learning rate for rapid initial training and eventual
fine-tuning. The CNN was trained for 200 epochs, taking ≈ 6 h. Data
generation/preprocessing and training/prediction were performed using an
Intel(R) i9-9820X CPU and NVIDIA GeForce RTX 2080 Ti, respectively.

Both the preprocessing and CNN are computationally lightweight; for a single
input, without special optimization, our code has a wall time of 21.6± 0.13 ms
and 71.1± 6.5 ms, respectively, on the same computer. Hence, the processing
pipeline can be run in real-time in parallel with a≤10-Hz measurement.

Uncertainty Analysis. We analyze the improvement in the theoretical
uncertainty of the lifetime prediction for general lifetimes. For this, we use
a Bayesian prediction model.

Consider a signal of lifetime τ , creating an integrated CMOS measurement
q and a series of noisy iCCD measurements ŝ = (ŝ1, ŝ2, ..., ŝ3). Here, ŝn
is the noisy iCCD signal in the n-th replica. We assume that the CMOS has
an SNR far better than the iCCD camera; therefore, we ignore the CMOS in
our noise calculations. Hence, we assume that the uncertainties in lifetime
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predictions originate from the iCCD only and the probability density function of
our predictions likewise.

Continuing Eq. 3, Bayes’ theorem states that

p(τ |ŝ) =
p(ŝ|τ )p(τ )

p(ŝ)

=
p(ŝ|τ )p(τ )∫

τ p(ŝ|τ )p(τ )dτ
. [11]

We do not aim to make prior assumptions on p(τ ) as we wish the system
to be unbiased; however, for the sake of numerical calculation, we limit it
between 0.02 and 20 ns. In this equation, p(ŝ|τ ) is simply dependent on our
noise model (for fixed total signal intensity), while the denominator can be
numerically estimated by discretizing the integral.

Let us denote the variable denoting replica i’s iCCD signal as Si, with a value
ŝi in a particular measurement. Si is distributed as

Si ∼ si ± n.

We expand Eq. 1 for si as

si =
∫
t
M(t)DQEP(t)dt, [12]

where M is the iCCD gain, DQE is the detector quantum efficiency, and P(t) is
the number of photons falling on the pixel at time t and is dependent on τ ;
finally, n is the noise (29). Eq. 1 describes the signal in our particular case as a
function of lifetime τ .

The iCCD amplifies not only the Poissonian (signal) noise but also dark
current noise and clock-induced charge (spurious) noise. Therefore, the noise,
n, is

n ∼

√
σ 2
readout + F2

∫
t
M2(t)(σ 2

signal(t) + σ 2
dark + σ 2

clc)dt

σ 2
signal(t) = DQE · P(t), [13]

where F is the noise factor of the amplification process itself. Our Andor iStar
334T uses an 18x-73 intensifier, with quantum efficiency DQE of around 20%
at emission above 500 nm, dark current noise of 0.03 e−/s after amplification,
readout noise 8 e−/s, and clock induced charge noise 0 e−/s (30). We combine
Eqs. 12 and 13 as

Si ∼ N (si, n). [14]

We can then approximate the conditional probability density functionp(Si =
ŝi|τ ). We equate our noisy measurement ŝ with a noisy lifetime prediction τ̂ ,
giving us p(τ̂i|τ ). We then multiply the p(τ ) (uniform over [0.02,20] ns) and
normalize by integrating over τ to obtain p(τ |τ̂i) as in Eq. 11

Finally, from p(τ |τ̂i)), we estimate p(τ |τ̂ ). For this, we assume that τ̂i are
measurements of the same underlying variable, which is correct for our given
noise model. Therefore,

p(τ |τ̂ ) = p(τ |τ̂0, τ̂1, ..., τ̂n) =
∏
i

p(τ |τ̂i). [15]

This probability distribution provides the uncertainty (SD) of estimated
lifetime τ̂ for some noisy measurement ŝ. This uncertainty is just a lower
bound, as our assumptions of a thermal noise-free system reduce the noise of
our estimates compared to a physical system. SI Appendix for a visualization of
our uncertainty analysis.

Data, Materials, and Software Availability. Raw images, synthetic training
data (numpy arrays) for training a neural network, code required to process the
data and produce the results in the paper, figures in svg and pdf formats. Data
have been deposited in Single-shot time-folded fluorescence lifetime imaging
(10.5525/gla.researchdata.1380) (31).
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