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Abstract—Fingerprint traits are widely recognized for
their unique qualities and security benefits. Despite their
extensive use, fingerprint features can be vulnerable to
puppet attacks, where attackers manipulate a reluctant but
genuine user into completing the authentication process.
Defending against such attacks is challenging due to the
coexistence of a legitimate identity and an illegitimate intent.
Research on countering puppet attacks is limited, and
existing studies are hindered by the requirement of guiding
users through the authentication process manually. In this
article, we propose PUPGUARD, a solution designed to guard
against puppet attacks. This method is based on user behavioral patterns, specifically, the user needs to press the
capture device twice successively with different fingers during the authentication process. PUPGUARD leverages
both the image features of fingerprints and the timing characteristics of the pressing intervals to establish two-factor
authentication. More specifically, after extracting image features and timing characteristics, and performing feature
selection on the image features, PUPGUARD fuses these two features into a 1-D feature vector, and feeds it into
a one-class classifier to obtain the classification result. This two-factor authentication method emphasizes dynamic
behavioral patterns during the authentication process, thereby enhancing security against puppet attacks. To assess
PUPGUARD’s effectiveness, we conducted experiments on datasets collected from 31 subjects, including image features
and timing characteristics. Our experimental results demonstrate that PUPGUARD achieves an impressive accuracy rate
of 97.87% and a remarkably low false positive rate (FPR) of 1.89%. Furthermore, we conducted comparative experiments
to validate the superiority of combining image features and timing characteristics within PUPGUARD for enhancing
resistance against puppet attacks.

Index Terms— Behavior patterns, fingerprint, one-class classification, puppet attack detection.

I. INTRODUCTION

F INGERPRINT traits have become increasingly popular in
recent years due to their distinctiveness, reliability, univer-

sality, and security. When compared to alternative biometric
authentication methods, fingerprint authentication stands out
with remarkably low rates of false rejection (FRR) and false
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acceptance (FAR), making it a more secure option than tradi-
tional password-based authentication, which can be susceptible
to theft or forgetfulness. Despite holding a substantial share
of the global market and finding use in various scenarios [1],
fingerprint authentication is not without its inherent flaws,
including susceptibility to presentation attacks (PAs).

ISO/IEC 30 107 defines PA as “presentation to the biometric
data capture subsystem with the goal of interfering with
the operation of the biometric system” [2]. Since the
proposal of PA, it has garnered considerable attention
due to the minimal implementation cost associated with
generating artificial fingerprints [3], and the attacker can
use many common materials to complete the imitation of
the victim’s fingerprint, such as silicone [4], plasticine [5],
and thermoplastic materials [6]. Both hardware-based and
software-based methods have been proposed to improve the
ability of biometric systems to resist such attacks.

However, besides detecting fake or altered biometric
characteristics, PA also encompasses identifying coercion,
non-conformity, and obscuration [7]. Puppet attack is an attack
in which an attacker forces a legitimate victim to press a
finger against a fingerprint reader for intrusion [8]. Puppet
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Fig. 1. Possible security risks caused by puppet attacks.

attacks often involve violence, threats, or intimidation, such
as an attacker wielding a weapon to force a victim to unlock
a vault with a fingerprint lock or a child forcibly pressing a
parent’s finger to unlock a game console. Failing to defend
against puppet attacks can result in substantial financial losses
and jeopardize personal safety. Hence, it is imperative to
research biometric fingerprint authentication methods that can
withstand puppet attacks. The schematic of the puppet attack
and the security risks it may cause is shown in Fig. 1.

Unfortunately, research on puppet attacks is not as extensive
as that on liveness detection, with the majority of studies in
fingerprint PAs primarily concentrating on assessing whether
the input fingerprint originates from a real living person or an
imitation. These methods are difficult to defend against puppet
attacks, because in puppet attacks, although the victim is
coerced, the input fingerprint still belongs to a legitimate user.
Wu et al. [8] propose the concept of puppet attack and design a
detection method based on fingertip touch behavior. However,
this method has certain limitations. These include potential
FRR due to behavior variability and different postures, as well
as the requirement for the user to hand-hold the device, which
can result in failure if the device is placed stationary on a
desktop.

In this article, we introduce PUPGUARD, a solution
designed to defend against puppet attacks. PUPGUARD
leverages user behavior patterns, specifically consecutive
finger presses on the fingerprint module using different fingers,
to capture intrinsic image features and timing characteristics,
and subsequently implements two-factor authentication. This
behavior-based approach enhances security by requiring
two distinct finger presses and introducing a time gap
between them, making it tougher for attackers to mimic the
authentication process. Unlike traditional fingerprint authen-
tication, which relies solely on static images, PUPGUARD
focuses on dynamic behavior patterns during authentication,
strengthening overall security against fingerprint PAs. We ini-
tially conduct separate preprocessing for both fingerprint
images and timing characteristics. Subsequently, we employ
local binary pattern (LBP), histogram of oriented gradients
(HOG) techniques, and residual network (ResNet) to extract
discriminative features from characterized behavioral patterns.
Following this, we perform feature selection on image-based
features and fuse them with time-based features to create a
fused feature vector, which is finally input into a one-class
classifier to obtain the classification result.

Based on our investigation, there is currently no publicly
available dataset that comprehensively encompasses both

image features and timing characteristics required by our
PUPGUARD method. Specifically, a fingerprint pair is
precisely characterized as two distinct fingerprint images
acquired through consecutive double presses of the fingerprint
module using different fingers during a single authentication
process, serving to represent image features. The correspond-
ing time interval between presses is utilized to represent
the timing characteristics. Existing fingerprint datasets may
contain unforced and coerced fingerprint images but do
not directly facilitate the formation of fingerprint pairs or
the generation of datasets encompassing timing attributes of
behavior patterns. This limitation arises from the absence
of continuous consecutive presses of the fingerprint module
with differing fingers in existing datasets, which fails to
reflect the characteristics of continuous pressing in behavior
patterns. To address this issue, we established a database
comprising 496 fingerprint pairs (992 fingerprints) and cor-
responding time intervals collected from 31 individuals aged
between 20 and 85.

To demonstrate the necessity of our database and the
superiority of using PUPGUARD, we conducted a large
number of experiments. The results showed that PUPGUARD
reaches highest accuracy of 97.87% and lowest false positive
rate (FPR) of 1.89%, respectively. The experiment using only
image features for detection and the one using only timing
characteristics proved the necessity of employing both types
of features to represent behavior patterns for detecting puppet
attacks. Furthermore, we performed experiments involving
behavioral patterns where the same finger was used for two
consecutive presses to establish the importance of utilizing
two different fingers. Subsequently, we conducted experiments
that showed improved performance of PUPGUARD with the
expansion of the training set.

The contributions of this article are summarized as follows.
1) We propose PUPGUARD, a system that leverages user

behavior patterns to capture inherent image features
and timing characteristics, thereby implementing a two-
factor authentication method. This heightened security
approach mandates two separate finger presses with
a time gap between them, increasing the difficulty
for potential attackers attempting to replicate the
authentication process.

2) To assess the performance of PUPGUARD, we assem-
bled a dataset of 496 fingerprint pairs (comprising
992 individual fingerprints) and their associated time
intervals from 31 participants spanning ages 20–85.
This dataset, obtained with Institutional Review Board
(IRB) approval, effectively encapsulates the specified
behavioral patterns.

3) A series of comprehensive experiments were carried
out to illustrate both the essentiality and effectiveness
of PUPGUARD. These experiments encompassed sce-
narios using solely image features, exclusively timing
characteristics, and employing the same finger for both
presses. Our experimental findings conclusively indicate
that PUPGUARD attains an outstanding accuracy rate of
97.87% while simultaneously achieving the lowest FPR
of 1.89%.
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The rest of this article is organized as follows. Section II
reviews related work on liveness detection and puppet attacks.
Section III describes the motivation and principle for our
work. In Section IV, the proposed PUPGUARD is explained
in detail. The experimental results and detailed analysis are
presented in Section V. Limitations of PUPGUARD are
discussed in Section VI. Finally, Section VII provides a
summary of this article.

II. RELATED WORK

Fingerprint authentication is susceptible to PAs, as skilled
individuals with inexpensive hardware and software can
easily generate synthetic fingerprints, thereby increasing their
chances of successfully executing such attacks [33].

Hardware-based PAD methods necessitate the inclusion of
specific sensors within the fingerprint biometric system. These
sensors are responsible for verifying the authenticity of signals,
such as pulse oximetry [9], blood pressure [10], [11], and
odor [12]. By capturing both the fingerprint and one or more
of these signals, the biometric system can authenticate the
user. Additionally, some hardware-based techniques involve
differentiating between the electrical properties [13], [14] of
living skin and counterfeit materials, as well as utilizing optical
coherence tomography (OCT) [15], [16], [17], [18], [19].

Software-based methods use image processing techniques
to extract image features from acquired images, combined
with machine learning methods to improve defense against
fingerprint spoofing attacks [34]. Specifically, software-based
methods can be divided into dynamic and static methods.
Dynamic techniques utilize time-varying features that require
a sequence of fingerprint images or videos to extract [33].
These features identify the authenticity of fingerprints by
detecting the physiological characteristics of the human body.
Current mainstream methods include skin distortion-based
methods [20], [21], [22] and perspiration-based methods [23],
[24], [25], [26]. Unlike dynamic methods, static methods
only need one image of the fingerprint. They extract the
required features from the image to complete the detection
of PA. Methods based on physiological or anatomical features
mainly utilize perspiration [35], [36] and sweat pores on the
finger surface [27], [28], [29]. Methods based on the surface
coarseness [30] of the fingerprint rely on the premise that
the surface of the fake fingerprint is rougher [37] to judge
the authenticity of the fingerprint. Moreover, texture feature-
based methods are widely employed. Coli et al. [31] use
high-frequency energy to tell a finger from a fake, because
a fake finger does not retain the high-frequency details of
a live one. Ghiani et al. [32] proposed a method based on
rotation-invariant local phase quantization, which exploits the
lack of information during the fabrication of fake fingerprints
and extracts the texture features of fingerprint images to reject
fake fingerprints.

Unfortunately, most of the existing researches on PAs focus
on liveness detection, so it is difficult for these methods to
detect puppet attacks. Existing methods of defending against
puppet attacks have certain flaws. Wu et al. [34] propose a
detection method based on fingertip-touch behavior, but its

reliance on a handheld authentication device poses challenges
for application in stationary scenarios like door locks or safes
where the fingerprint device remains fixed.

Unlike existing literature, our work will leverage user
behavior patterns to implement a two-factor authentication
method, which can perform identity verification both when the
user is holding the authentication device and when the device
is stationary, addressing the current research gap in usage
scenarios. Table I summarizes the aforementioned methods
and their common drawbacks.

III. PRINCIPLE OF PUPGUARD
We represent a legitimate user subject to a puppet attack

as a combination of two attributes: the user’s genuine identity
and an illegitimate state. The simultaneous presence of these
attributes complicates the defense against puppet attacks.
Effectively countering such attacks hinges on the precise
identification and differentiation of these attributes during
user authentication. If we treat these attributes as Boolean
values and view puppet attack detection as a logical “AND”
relationship between them, a user is deemed legitimate only
when both properties are true—signifying the possession of a
legal identity and legal status.

Conventional fingerprint authentication methods ascertain
the user’s identity legitimacy by scrutinizing the image
captured during a single press of the fingerprint module.
However, these methods pose challenges in identifying the
stateful attributes of puppet attacks since, even if a user
falls victim to a puppet, the captured fingerprint still belongs
to the legitimate user. To fortify defenses against puppet
attacks, it is imperative to capture user status information
utilizing data beyond the fingerprint image during the pressing
action.

We are aware that when an individual’s state becomes
abnormal, it frequently manifests through specific behavioral
patterns, such as trembling, stiffness, weakness, or the use of
excessive force. In situations where a user is subjected to a
puppet attack and compelled to undergo authentication against
their will, the victim’s response can vary from resistance due
to anger, trembling due to fear, to stiffness and powerlessness
due to disorientation. Consequently, in PUPGUARD, our
emphasis is on analyzing the user’s behavioral patterns to
extract the state-related characteristics of the authentication
process, facilitating the detection of puppet attacks.

Inspired by the keystroke dynamic authentication
method [38], [39], [40], we explore alterations in user
behavior patterns when subjected to puppet attacks compelling
them to press their fingerprints. We introduce an innovative
behavioral pattern to counter puppet attacks, requiring the
user to consecutively press the fingerprint module using
two different fingers. Deconstructing this pattern into single
actions involves a first press with one finger, transitioning
to another finger, and a second press with a different
finger. The temporal aspect of switching fingers is crucial
in this behavioral pattern, prompting us to consider both
the fingerprint image and the time of finger switching for
comprehensive puppet attack detection.
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TABLE I
ANALYSIS OF METHODS FOR LIVENESS DETECTION AND PUPPET ATTACK DETECTION

Fig. 2. Behavioral pattern analysis in normal and attacked states. (a) Normal state. (b) Attacked state.

A. Rationale Behind the Effectiveness of this Behavior
Pattern

When users execute this behavior pattern under normal
circumstances, they adhere to their accustomed rate, direction,
and force while contacting the fingerprint sensor. The finger-
switching process is conducted in a relaxed and natural
manner, as illustrated in Fig. 2(a).

Conversely, when the user is coerced into performing the
authentication action, as depicted in the first diagram of
Fig. 2(b), the attacker forcibly elevates the victim’s finger to
execute the first fingerprint press. Subsequently, illustrated in
the second diagram of Fig. 2(b), the attacker extends two
fingers and forcefully presses the victim’s index finger onto
the fingerprint module. Following this, as demonstrated in the
third diagram of Fig. 2(b), the attacker utilizes the palm to
forcefully raise the victim’s finger, which was used for the
initial press. During finger switching, the victim’s resistance
to cooperation prompts the attacker to forcibly use their thumb
to lift the victim’s middle finger for the subsequent press,
as shown in the fourth diagram of Fig. 2(b). Subsequently, the
attacker controls the victim’s hand, using his own fingers to
forcibly collect the fingerprint with the victim’s middle finger
in the last diagram of Fig. 2(b).

Analysis of fingerprint images and finger-switching duration
revealed significant differences between the normal and forced
states. In the second and fifth diagrams of Fig. 2(b), due to
the victim’s resistance and the attacker’s coercion, the obtained
fingerprint image significantly deviates from the normal image,
affecting the center and force of the press.

Besides, in Fig. 2(b), coercion, resistance, or trembling
prolongs the time required for the attacker to align the victim’s
finger with the fingerprint module, increasing the time spent on
switching fingers in the behavioral pattern. We elucidate this
phenomenon by conducting an analysis of forces in two critical
scenarios [41]. As illustrated in Fig. 3, the attacker’s force is
depicted through red arrows, the victim’s force through blue
arrows, and the resulting force through green arrows. At the
depicted moment in Fig. 3(a), the magnitudes of forces in the
x- and z-directions are equal but opposite for both the attacker
and the victim. In the y-direction, however, the force applied
by the victim is lesser than the downward force applied by
the attacker, leading to a resultant force directing downward.
Consequently, the attacker can compel the victim to engage
the fingerprint acquisition module.

The above analysis leads us to the following two
conclusions.
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Fig. 3. Force analysis in two cases. (a) Successfully press the
acquisition device. (b) Slip away from the acquisition device.

1) No matter how disparate the strength difference between
the victim and the attacker is, it is very difficult for
the attacker to align the victim’s finger to the sensor
within the time interval in the normal state, because in
the case of the victim struggling and the attacker forcibly
controlling it, even a small change of the victim’s
strength can lead to a significant change of the resulting
combined force.

2) Resistance movements that may occur in a victim of
a puppet attack, such as moving the finger away from
the sensor or rotating the finger as far as possible when
forced to press, can make the resulting fingerprint image
significantly different from that in the normal state, e.g.,
the center of the press, the angle of rotation, or the force
of the press.

B. Justification for this Specific Behavior Pattern
The rationale behind defining a behavior pattern that

necessitates the user to press the fingerprint module twice
consecutively with two different fingers, as opposed to
pressing twice with the same finger or pressing the sensor
thrice with three different fingers, is twofold.

1) Experimental proof and analysis in Section V reveal
the deficiencies of using the same finger to press the
sensor twice, followed by utilizing image features and
time features for puppet attack detection.

2) We conducted an experiment measuring the total
duration of pressing the sensor thrice with three
different fingers, averaging 6.1298, more than twice
the average duration of our defined behavioral pattern.
Considering data collection convenience and user
experience, we chose the pragmatic approach of using
two different fingers to press the fingerprint module
twice in succession.

Therefore, we choose this specific behavior pattern for the
detection of puppet attacks.

C. Framework of PUPGUARD
The framework of PUPGUARD is shown in Fig. 4.

PUPGUARD utilizes user behavior patterns to capture intrinsic
image features and timing characteristics, subsequently
integrating a two-factor authentication mechanism. This
approach bolsters security by necessitating two distinct finger
presses and introducing a time gap between them, rendering
it more challenging for potential attackers to replicate the

authentication procedure. The proposed scheme achieves
detection of puppet attacks through monitoring.

1) Pressure applied to the sensor during finger presses.
2) Time gap between the two presses.

More precisely, pressure monitoring is executed using
160 × 160 pixel matrices, while time interval monitoring is
achieved by calculating the difference in the generation time
of the two fingerprint images.

Our initial process involves the independent preprocess-
ing of both fingerprint images and timing characteristics.
Subsequently, we apply LBP, HOG, and ResNets to extract
distinctive features from characterized behavioral patterns.
Then, we perform feature selection on the image-based
features. Following this, we merge image-based and time-
based features through feature fusion, creating a fused feature
vector. This vector is then fed into a one-class classifier to
derive the final classification results. It is worth noting that
we also experiment with decision level fusion, which will be
presented in the subsequent sections.

IV. PROPOSED METHOD

The workflow of PUPGUARD can be divided into the
following steps: data acquisition, data preprocessing, feature
extraction and selection, feature fusion, and classification.
We also try not to use feature fusion but to classify the
two features separately and apply decision fusion. Therefore,
in this section, we present the implementation details of the
above steps one by one.

A. Data Acquisition
Since the PUPGUARD method requires experimental data

derived from a specific behavioral pattern, it is not possible to
directly utilize existing databases for experimental data. Here,
we show the data collection and data acquisition process of
PUPGUARD.

1) Fingerprint Acquisition Module: We compared a variety
of fingerprint acquisition modules, and finally chose BM2166
semiconductor fingerprint module [42], because it integrates
semiconductor sensor and fingerprint algorithm chip, and has
the advantages of small size, low power consumption, simple
interface, high module reliability, and good adaptability to wet
and dry fingers. The parameters of BM2166 are shown in
Table II. The fingerprint module and STM32 micro-controller
together form the fingerprint acquisition system [43], as shown
in Fig. 5.

The system can capture fingerprint images in various
pressing situations, whether the volunteer is pressing at
various angles and centers, or when the volunteer’s finger
is unintentionally and subtly sliding or rolling during the
pressing process. Meanwhile, the system records the current
time in standard format yyyymmddHHMMSS.xxxxxx each
time it successfully captures a fingerprint image. In this format,
yyyy represents the four-digit year, mm represents the two-
digit month, dd represents the two-digit day of the month,
HH represents the two-digit hour of the day in 24-h format,
MM represents the two-digit minute in the hour, SS represents
the two-digit number of seconds in the minute, and xxxxxx
represents the six-digit number of microseconds in the second.
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Fig. 4. Framework of the proposed PUPGUARD.

TABLE II
PARAMETERS OF THE BM2166

Fig. 5. Fingerprint acquisition module.

2) Acquisition Details: A successful data entry is defined as
follows in accordance with the behavioral pattern: volunteers,
in a relaxed and natural state, selecting two different fingers
and pressing the fingerprint collection module twice in a row,
with each finger pressing the module once, in a continuous
and natural manner without deliberate pauses or accelerations.
We ensure that all volunteers’ pressing actions are considered
normal, accommodating various legitimate scenarios that
may occur. For instance, if after pressing the first finger,
the volunteer notices dust on the second finger, they can
simply wipe it off and proceed with the second pressing
action. Similarly, if the volunteer encounters any other minor
interruptions or adjustments during the process, they can
be accommodated as long as they align with the overall
requirements of the behavioral pattern.

Volunteers were asked to complete data entry using different
pressing positions, including pressing with fingertips, pressing
with the middle of fingers, pressing with the side of fingers,
and pressing with the lower part of fingers. Since almost all
volunteers are not accustomed to using their ring fingers for
fingerprint pressing, only seven volunteers participated in data
entry with their ring fingers of both hands, completing a total
of 31 pairs of fingerprints with the ring finger. Other volunteers
were asked to use their thumbs, index fingers, middle fingers,
and little fingers of the left and right hands to complete the
data entry.

A complete data acquisition process of the acquisition
system can be summarized in the following steps: 1) the
volunteer selects two different fingers; 2) the two fingers
are pressed consecutively according to the requirements of
a specific behavioral pattern; 3) the system sets up the
two captured fingerprint images as a fingerprint pair; 4) the
system records the moments of the two fingerprint acquisitions
and makes the difference; and 5) the system adds the
fingerprint pair and the time difference to the dataset as a set
of data.

During the data entry process, the collection device was
fixed on a table at a height of 1.2 m. We required volunteers
to perform data collection in two postures: standing and sitting.
In the sitting posture, volunteers were instructed to sit within
a range of 0.2–0.5 m in front of the collection device. In the
standing posture, volunteers were required to stand in front of
the collection device with their arms naturally hanging down
to complete the data collection. Between each successful data
entry behavior, volunteers were required to completely remove
their fingers from the fingerprint collection device to ensure a
significant difference between each data entry behavior.

3) Data Constitution: The dataset contains only data
collected from volunteers in their normal state, which means
that it does not include any anomalous data collected
from volunteers who are under puppet attacks. The dataset
encompasses various pressing postures that users would
naturally adopt, including different pressing angles and
centers, as shown in Fig. 6(a). At the same time, the dataset
includes various combinations of two presses with different
fingers. Combinations refer to pressing two different fingers
in two different orders, such as pressing the thumb first and
then the index finger, or vice versa. The detailed compositional
information of our collected dataset is shown in Table III.
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Fig. 6. Sample fingerprints in the dataset. (a) Different pressing
gestures. (b) Different degrees of fingerprint wear.

TABLE III
DETAILED INFORMATION OF THE DATASET

A total of 31 participants were involved in the data
collection process, comprising 12 females and 19 males. Their
ages ranged from 20 to 85 years, with nine participants
falling within the 20–30 age range, six participants within
the 30–45 age range, six participants within the 45–50 age
range, seven participants within the 50–56 age range, and
three participants within the 56–85 age range. The larger age
range ensures that the dataset encompasses the condition of
fingerprint wear in all age groups, as shown in Fig. 6(b).

B. Data Preprocessing
The preprocessing of experimental data is divided into

two parts: preprocessing of fingerprint images and prepro-
cessing of timing characteristics. For timing characteristics,
we standardize them. For fingerprint images, we utilize two
different preprocessing methods, one using the classical image
segmentation algorithm and the other based on resizing,
cropping, and normalization.

1) Image Preprocessing Based on Otsu: For fingerprint
image segmentation, we employ the Otsu method. Otsu’s
thresholding algorithm finds an optimal threshold value
to separate image foreground and background based on
grayscale variance [44]. This robust technique handles varying
lighting, contrast, and noise levels in image processing tasks.
Utilizing this optimal threshold achieves image segmentation.
To visualize, Fig. 7 contrasts the original and Otsu processed
images. This preprocessing approach is labeled Prepro1.

2) Image Preprocessing Based on Resizing, Cropping, and
Normalization: The images in our training dataset undergo a

Fig. 7. Comparison of fingerprint images before and after using Otsu.
(a) Original fingerprint image. (b) Fingerprint image using Otsu.

series of preprocessing steps to prepare them for analysis.
Initially, these images are subjected to resizing and center
cropping to achieve uniformity in size, ensuring that they
can be effectively processed by our model. Subsequently,
we convert the images into PyTorch tensors, as this format
is compatible with our chosen model architecture.

Once the images are transformed into tensors, we take an
essential step in the preprocessing pipeline, which involves
normalizing the pixel values. This normalization process
is crucial for achieving standardized data representation
throughout the subsequent processing stages. By scaling the
pixel values appropriately, we bring the images to a common
scale and remove any potential biases in the data.

The combination of resizing, center cropping, converting
to tensors, and pixel value normalization forms a critical
foundation for the success of our model during training.
These preprocessing steps allow the model to effectively learn
and extract meaningful features from the images, leading to
better performance and generalization on unseen data. This
preprocessing approach is labeled Prepro2.

3) Timing Characteristics Standardization: For timing char-
acteristics standardization, we utilize the formula

t∗
=

t − µ

σ
(1)

where µ and σ are the mean and standard deviation of the
timing characteristics, respectively. Numerically, µ is equal to
3.0645, and σ is equal to 0.0055. Using this formula, we can
transform the raw data point t into a deviation relative to µ,
and then divide it by σ to ensure that the standardized data
has a unit variance.

C. Feature Extraction and Feature Selection
In this section, feature extraction and feature selection is

discussed. Since timing characteristics is 1-D data, normalized
timing data is directly used as timing characteristics. For the
preprocessed fingerprint images, we use and compare two
different features, i.e., LBP- and HOG-based features, and
ResNet-based features. To select the best feature combinations
as well as reduce the feature dimensions, we also perform
feature selection on the image features.

1) LBP- and HOG-Based Features: The LBP algorithm,
which was first proposed by Ojala et al. [45] for texture
classification, is a widely used texture descriptor in computer
vision applications. The basic idea of LBP is to compare
each pixel in an image with its surrounding neighbors. For
each pixel, a binary code is generated based on whether the
surrounding pixel has a higher or lower intensity value than
the center pixel. These binary codes are then concatenated to
form a unique pattern for that local neighborhood.
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Fig. 8. Framework of ResNet34-based feature extractor.

The HOG algorithm works by analyzing the gradient orien-
tations of small image patches and constructing histograms of
these orientations [46]. These histograms are then normalized
and concatenated to form a feature vector that represents the
image.

2) ResNet-Based Features: ResNet, short for Residual
Network, is a deep convolutional neural network architecture
proposed by He et al. [47]. It utilizes residual blocks,
employing “skip connections” to pass residual information,
effectively tackling the vanishing gradient problem in deep
networks. ResNet allows the construction of exceptionally
deep networks and achieves outstanding performance in
computer vision tasks.

To leverage ResNet for extracting image features, we mod-
ified the original architecture by retaining the convolutional
layers and pooling layers responsible for learning hierarchical
spatial features, while discarding the fully connected layers
used for classification in the original network. This alteration
facilitates the extraction of higher level, semantically rich
feature representations from the input images, which can
be utilized for puppet attack detection. For instance, the
framework of using the ResNet34 to extract features for
subsequent classification is shown in Fig. 8.

3) Feature Selection on Image Features: After extracting the
image features using the method described above, the image
features are still high dimensional compared to the 1-D timing
characteristics. To select the best feature combinations as well
as reduce the feature dimensions, we perform feature selection
on the image features, and in our experiments we employ
principal component analysis (PCA).

TABLE IV
CHANGES IN DIMENSIONALITY OF FEATURE VECTORS AFTER PCA

PCA is a popular data analysis technique for handling high-
dimensional datasets. It achieves dimensionality reduction by
linearly transforming data into a new coordinate system while
retaining as much information as possible in lower dimensions,
thereby enhancing data interpretability. It identifies principal
components, with the first principal component being the
direction that maximizes the variance of the projected data,
and subsequent principal components being orthogonal to the
previous ones while also maximizing the variance of the
projected data. The changes in the dimensions of the feature
vectors before and after the use of PCA in our approach are
shown in Table IV.

After feature selection and feature dimensionality reduction,
the image features will complete feature fusion with 1-D
timing characteristics, as will be described below.

D. Feature Fusion and Decision Fusion
In our defined behavior pattern, timing characteristics are

represented as 1-D, while image features belong to high-
dimensional space. Therefore, we employ two fusion methods
to deal with these two features. The first method is feature
fusion, where we fuse the two features to form a 1-D feature
vector, and this fused feature vector can characterize the
behavioral patterns more effectively. The second method is
decision level fusion, where we use two classifiers, as will
be described in Section IV-E, to process image features and
timing characteristics separately, and then the outputs of the
two classifiers are fused to obtain the final classification
results.

1) Feature Concatenation: We concatenate image features
and timing characteristics into a single larger feature vector,
and then use this merged vector for prediction.

2) Feature Cross: We intersect image features with
timing characteristics to generate newly combined features.
In particular, we multiply each element of the image features
with the timing characteristics to create a new feature vector.
This method is suitable when there is some correlation
between image and time features.

E. Decision Fusion
In addition to employing feature fusion, we explore the

utilization of two distinct classifiers to independently process
the distinct feature types within PUPGUARD. Subsequently,
a decision fusion mechanism is applied to amalgamate the
classification outcomes of the two classifiers, yielding the
ultimate detection results. We have explored two methods of
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decision fusion: simple majority voting [48] and weighted
majority voting [49].

1) Simple Majority Voting: We adopt a unanimous voting
approach to accomplish decision fusion [50]. Two distinct
one-class classifiers, denoted as Ctime and Cimg, are trained
for the recognition of timing and image features, respectively.
Upon receiving input samples, Ctime processes time features,
while Cimg processes image features. The decisions rendered
by these classifiers are independent and are represented as dtime
and dimg for timing and image classification, respectively. The
final decision classifies a sample as positive only if both dtime
and dimg are positive; otherwise, the final decision categorizes
the sample as an anomaly.

2) Weighted Majority Voting: Ctime and Cimg may not
perform equally well and therefore, employing unanimous
voting may not be optimal. In this case, the appropriate
solution is to weight each classifier based on its performance.
We employ a weighted majority voting approach introduced
in [49].

In this approach, the iterative process involves updating
weights for each instance within the validation set. Initially, all
weights are uniformly set to 1. The weights of the classifiers
that correctly predict class label of an instance are incremented
by the ratio of the number of incorrectly predicting classifiers
to the whole number of classifiers, as outlined in the following:

wi j =


wi−1, j + αi , if the j th classifier makes a correct

prediction for the i th instance
wi−1, j , if the j th classifier makes an incorrect

prediction for the i th instance
(2)

where wi j denotes the weight of j th classifier as the operation
realized on i th instance. The alteration in weight, denoted as
αi , is computed as αi = Yi/n, where Yi represents the count of
erroneous predictions for the i th instance and n is the number
of classifiers.

When all instances in the validation set are processed
through Ctime and Cimg once, the resultant values are stored
as weights, denoted as wtime and wimg, respectively. These
weights are subsequently employed as the voting influence for
each classifier in predicting class labels for instances within the
test set. In the ultimate decision-making process, the sum of all
weighted votes for each class is calculated. The class with the
highest weighted vote is designated as the predicted class for
the instance to be classified, as outlined in (3), where dt,c = 1,
if classifier t decides for class c, and dt,c = 0 otherwise

max
c∈{normal,outlier}

∑
t∈{img,time}

wt dt,c. (3)

F. Detection Based on One-class Classifiers
Since our dataset contains only legitimate user data and

no outlier data, this is a one-class classification problem.
Therefore, we use the following three models to detect puppet
attacks: 1) one-class support vector machine (OC-SVM);
2) isolation forest (IF); and 3) local outlier factor (LOF).

1) One-Class Support Vector Machine: OC-SVM is a type
of support vector machine algorithm that is used for novelty
detection. The goal of one-class SVM is to learn a decision
boundary that separates the normal data points from the
outliers. The algorithm takes a single class of input data,
typically representing the normal class, and learns a decision
boundary that maximizes the margin around the normal data
points [51]. This margin is defined as the distance between the
decision boundary and the closest data point from the normal
class.

2) Local Outlier Factor: LOF is based on the concept of
local density, determined by considering k nearest neighbors
and their distances [52]. By comparing the local density of an
object with that of its neighbors, regions with similar density
can be identified, along with points that have significantly
lower density than their neighbors, classifying them as outliers.
The local density is estimated by the typical distance at which
a point can be “reached” from its neighbors. The definition of
“reachability distance” used in LOF is an additional measure
to produce more stable clustering results.

3) Isolation Forest: IF is a popular anomaly detection
algorithm introduced by Liu et al. [53]. It efficiently identifies
outliers in large-scale datasets by creating random binary
trees and measuring the isolation of anomalies based on
their shorter path lengths from the root. Its non-parametric
nature, computational efficiency, and effectiveness in high-
dimensional data have made it widely utilized in various
domains, including cybersecurity, fraud detection, and fault
diagnosis.

V. EXPERIMENTS AND ANALYSES

A. Experimental Preparation and Evaluation Indexes
To evaluate the performance of PIPGUARD, we create a test

set that contains 94 fingerprint pairs (188 fingerprint images)
and corresponding time difference data, including 41 positive
samples and 53 negative samples. Abnormal behavior is
defined as any instance or combination of the following
behaviors during the data collection process: 1) forcefully
pressing the fingerprint module with a single finger;
2) forcefully pressing the fingerprint module with both fingers
simultaneously; and 3) exhibiting an unusually prolonged or
shortened time difference between the two finger presses.

We collected the test set by involving different combinations
of male victims and male attackers, female victims and
male attackers, male victims and female attackers, and
female victims and female attackers. When collecting negative
samples, victims adopt two postures: standing and sitting. The
attacker’s actions mainly include using two fingers to pinch
the victim’s fingers to complete the pressing, using one finger
placed above the victim’s fingers to complete the pressing,
dragging the back of the victim’s fingers to complete the
pressing, and supporting the victim’s palm with the palm of the
hand, using the thumb to press the victim’s fingers to complete
the pressing. In both postures, negative samples are collected
under the following scenarios.

1) The victim simulates deep unconsciousness, and the
attacker has complete control over the victim to
complete the collection. The victim naturally hangs
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TABLE V
EXPERIMENTAL RESULTS OF PUPGUARD

down the upper arm, forearm, and palm without any
resistance.

2) The victim is awake, and the collection process has not
started when under the control of the attacker. Resistance
is attempted during the controlled collection process.
The resistance measures taken by the victim mainly
include retracting fingers, rotating fingers, forcefully
lifting fingers, and shaking fingers.

3) The victim is awake and has already started the
normal collection process. Just before completing the
normal authentication, the attacker suddenly controls
the victim’s hand, rapidly completing the remaining
collection process. In this collection scenario, the victim
simulates a lack of awareness of the attack, i.e.,
after being controlled, the victim rapidly completes the
remaining collection process without resistance.

It should be noted that this test set is only a subset of all
puppet attack scenarios because we cannot collect other types
of puppet attack data, such as uncontrollable trembling or
genuine unconsciousness due to violence or weapons.

All samples within the test set undergo identical pre-
processing procedures as those applied to the training set.
In particular, the fingerprint images are either processed
through Otsu preprocessing or undergo resizing, cropping, and
standardization. The timing features are standardized using (1),
with the mean and standard deviation of the timing features
for all samples in the test set calculated as 4.7085 and 3.1637,
respectively. Furthermore, for the negative samples within
the test set, the mean and standard deviation of the time
features are computed as 5.9677 and 3.7669, respectively.
Upon comparing the mean and standard deviation of the
time characteristics for all positive samples as presented in
Section IV-B3, a notable disparity is evident. The mean and
standard deviation of the time characteristics for abnormal
samples are substantially larger. This discrepancy arises from
the challenges posed by the victim’s struggle and resistance,
making it arduous for the attacker to predict and control the
victim. Consequently, there is an escalation in the duration
and intra-class differences of the temporal features across all
abnormal samples.
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We measure the performance of our proposed method with
accuracy, FPR, recall, precision, and F1-score. Accuracy is
the proportion of correct predictions, recall is the probability
of correctly predicting positive samples, precision refers to the
proportion of correct predictions among all predicted positive
samples, FPR is the probability of predicting an abnormal data
as normal, and F1-score is the harmonic mean of precision
and recall.

In practical scenarios, the tolerance for rejection surpasses
that for exposure to illicit intrusions. Consequently, in evalu-
ating the efficacy of PUPGUARD, emphasis should be placed
on accuracy and FPR.

B. Performance of PUPGUARD
Table V presents the experimental results of the PUP-

GUARD method under different conditions. It is worth noting
that the preprocessing method, Prepro2, mentioned earlier,
is only combined with ResNet-based features, while Prepro1
is only combined with LBP- and HOG-based features.

Four types of deep learning-based features are evaluated
using three classifiers, along with two feature fusion methods.
LBP- and HOG-based features are evaluated with the same
classifiers. It is noteworthy that regardless of which of the
above feature extraction methods is used, we perform feature
selection and dimensionality reduction on the extracted image
features.

The methods using LBP- or HOG-based features for
detecting puppet attacks demonstrate poor performance.
Regardless of the one-class classifier or feature fusion method
employed, the best achieved performance is only 88.29%
accuracy and 15.09% FPR. These results are insufficient for
effective security defense.

In contrast, employing ResNet-based features significantly
improves performance. Specifically, using ResNet50-based
features, OC-SVM, and feature cross-fusion, PUPGUARD
achieves the highest accuracy of 97.87% and an FPR of 1.89%.

Furthermore, under the premise of using ResNet features,
feature cross-fusion outperforms feature concatenation notice-
ably. This can be attributed to our defined behavior patterns
having 1-D timing characteristics, while image features exist
in a high-dimensional space.

If solely employing feature concatenation to construct fused
feature vectors, certain limitations and challenges arise. A sig-
nificant limitation is the dimensionality mismatch between
timing and image features, potentially leading to suboptimal
performance by not fully utilizing their complementary
information. Additionally, differences in feature scales could
result in biased performance, favoring one feature type over
others during the learning process.

In contrast, employing the feature cross-fusion method
creates a more integrated and informative representation.
Leveraging the inherent relationships between different feature
types and their complementary strengths leads to improved
performance and more accurate detection of puppet attacks.
Moreover, feature cross-fusion mitigates dimensionality mis-
match issues and ensures a more efficient and effective use of
the combined feature set in the learning process.

TABLE VI
EXPERIMENTAL RESULTS SOLELY BASED ON IMAGE FEATURES

TABLE VII
EXPERIMENTAL RESULTS SOLELY BASED

ON TIMING CHARACTERISTICS

C. Detection Solely Based on Image Features
The purpose of this experiment is to demonstrate the neces-

sity of using both image features and timing characteristics in
the PUPGUARD method to characterize our defined behavior
patterns, in other words, to demonstrate the superiority of
combining timing characteristics to detect puppet attacks.
Using only image features means that image features do not
need to be fused with timing characteristics but are directly
fed into a one-class classifier.

The performance of this experiment is shown in Table VI.
The general performance of this experiment is suboptimal,
with the highest achievable accuracy falling below 70%, and
the FPR is unacceptably high. This may be attributed to
the following reasons: when coerced, the victim will make
different degrees of resistance. When the victim’s resistance is
robust, despite a significantly prolonged time interval between
the two presses, the force applied to the fingerprint collection
module may remain normal or even insufficient due to the
resistance. In other words, in this case, the image features are
normal but the timing characteristics is abnormal. If only the
image features are used for puppet attack detection, there will
be a high error rate and FPR.

D. Detection Solely Based on Timing Characteristics
The purpose of this experiment is to demonstrate the

necessity of using both image features and timing char-
acteristics in the PUPGUARD method to characterize our
defined behavior patterns, in other words, to demonstrate
the superiority of combining image features to detect puppet
attacks. In this experiment, the input feature vector is only the
timing characteristics, that is, the input is only 1-D features.
The performance of this experiment is shown in Table VII.

The performance of this experiment is better than the
experiment using only image features, but there is still a
large performance difference compared to the method that
uses both features for detection. This method also has obvious
disadvantages, resulting in mediocre performance. Contrary to
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TABLE VIII
EXPERIMENTAL RESULTS WITH UNANIMOUS VOTING

what was described in Section V-C, in this case, the attacker
may have such a large power gap to the victim that the victim
has to perform two quick presses. In this case, the time interval
between pressings may be within the normal range, but the
two pressing speeds are too fast and the force is too strong,
resulting in excessive grayscale of the fingerprint image, severe
deviation of the pressing center, or serious dragging marks in
the pressing image. In other words, in this case, the image is
abnormal but the timing characteristics is normal. If only the
timing characteristics is used for detection, it will lead to huge
risks.

E. Performance Using Unanimous Voting
Instead of feature fusion, we explore the utilization of

decision fusion. We first employ a unanimous voting approach
for decision fusion, as described in Section IV-E. Based on
the experimental results of the above two experiments, we use
ResNet50-based features as image features.

The experimental results using unanimous voting are shown
in Table VIII. It can be observed that the overall performance
using unanimous voting is commendable. It can be noted that
FPR achievable with decision fusion is generally exceedingly
low, even reaching 0.00% at one point. This is due to the fact
that the final decision classifies a sample as positive only if
both dtime and dimg are positive; otherwise, the final decision
categorizes the sample as an anomaly. However, it can be seen
that the accuracy of this method is not as good as the method
of feature cross used in PUPGUARD, which is due to the fact
that the method of unanimous voting produces too many false
negative (FN) values.

F. Performance Using Weighted Majority Voting
Besides unanimous voting, we also employ the utilization

of weighted majority voting. Initially, a validation group
comprising 1/11 of the training dataset is randomly chosen
for deployment in the weighting process. The initialization
of weights commenced with all values set to 1. During each
iteration involving instances from the validation set, only
the weights of classifiers that make accurate predictions are
incremented. The incrementation of weights is determined
by the ratio of the number of classifiers with incorrect
predictions to the total number of classifiers (n = 2).
The experimental results using weighted majority voting are
shown in Table IX. wimg and wtime represent the final weights

TABLE IX
EXPERIMENT RESULT WITH WEIGHTED MAJORITY VOTING

Fig. 9. Comparison of fingerprint pairs using the same finger and
different fingers. (a) Two fingerprints pressed twice using the same
finger. (b) Two fingerprints pressed in succession by two different
fingers.

assigned to image features and time features, respectively.
These weights are employed as the voting influence for each
classifier in predicting class labels.

Observations reveal that when the voting influence of time
features is greater than or equal to the voting influence
of image features, both accuracy and FPR perform well.
However, when the voting influence of time features is less
than that of image features, both accuracy and FPR deteriorate
significantly. In comparison to methods employing unanimous
voting, this approach tends to exhibit a higher FPR, making it
unsuitable for defense scenarios that prioritize high accuracy
and low FPR.

G. Detection With Same Finger Pressed Twice
The purpose of this experiment is to demonstrate the

necessity of using two different fingers in PUPGUARD.
Specifically, in constructing the dataset, volunteers were
asked to use the same finger to press twice, with the same
requirements as described in Section IV. To complete this
experiment, we invited the same volunteers as those who
created the dataset described in Section IV, and each person
completed two presses using the thumb, finger, middle finger,
ring finger, and little finger, respectively, collecting a total of
282 fingerprint pairs and time interval data as the training
dataset. At the same time, we also created a test dataset
using the method described in Section V-A, which includes
50 fingerprint pairs and time interval data.
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TABLE X
EXPERIMENTAL RESULTS WITH SAME FINGER PRESSING TWICE

It can be seen that this method has very obvious flaws,
namely a high FPR and low accuracy. The reason for this
is related to the way the pressings are done. When the user
needs to press two different fingers in succession, there must
be a finger-switching action, which will cause significant
changes in the angle, press center, and press intensity of
the two presses. In this experiment, the user only needs to
press the same finger twice in a row, and almost all users
only lift their finger slightly after the first press to complete
the second press, which will result in the fingerprint images
of the two presses being extremely similar. Fig. 9(a) shows
two fingerprints pressed twice using the same finger, while
Fig. 9(b) shows two fingerprints pressed in succession by two
different fingers. It can be clearly seen from Fig. 9(a) that
the two fingerprints are almost the same. Therefore, in this
case, the data in the dataset cannot include all the pressed
fingerprints under normal conditions. In other words, when the
input positive samples are too limited, the hyperplane output
by the model deviates greatly from the actual hyperplane,
resulting in lower accuracy, lower precision, and higher FPR.
Moreover, from a practical point of view, this verification
method will reduce the attack difficulty of the attacker, because
the attacker does not need to force the victim to switch fingers,
but only needs to forcibly lift the victim’s finger and then press
the fingerprint module. The performance of this experiment is
shown in Table X.

H. Effect of Dataset Size on PUPGUARD Performance
The previous experiments have already demonstrated that

using ResNet50 features and feature cross outperforms other
methods. Therefore, when exploring the impact of the dataset
size on PUPGUARD, we will only focus on using ResNet50
features and feature cross.

To explore the effect of training dataset size on detection
performance, we use 20%, 40%, 60%, 80%, and 100% of the
training dataset for training, respectively. Figs. 10 and 11 show
the impact of different dataset sizes on accuracy and FPR.

Fig. 10. Accuracy of PUPGUARD at different dataset sizes.

Fig. 11. FPR of PUPGUARD at different dataset sizes.

It can be observed that as the size of the training set
increases, the detection accuracy and FPR of PUPGUARD
gradually stabilize. This phenomenon arises from the fact
that as the training set size expands, the classifier becomes
more adept at capturing the data’s characteristics, resulting
in enhanced detection accuracy. Consistent detection accuracy
and a stable FPR may indicate that the classifier has converged
to a relatively steady state, suggesting minimal performance
fluctuations with larger training set sizes. In fact, the accuracy
of OC-SVM method steadily improves. Therefore, we can
draw the conclusion that the detection performance of
PUPGUARD does improve as the training set increases.

VI. LIMITATIONS OF PUPGUARD
A. User Adoption and Usability

Requiring users to follow a specific sequence of actions,
such as pressing the fingerprint module twice with distinct
fingers, might result in resistance or confusion among users.
The added steps could potentially lead to a decline in user
adoption due to increased complexity, affecting the overall
usability and user experience of the authentication process.
One possible solution is to add feedback mechanisms to ensure
that users know whether they have performed an action in the
right way by providing real-time feedback.

B. Implementation and Technical Constraints
Implementing a behavior-based authentication approach like

PUPGUARD might require adjustments to hardware, software,
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and user interfaces. The identification system needs to be able
to recognize a complete series of authentication actions as a
single authentication attempt, rather than multiple. Adapting
existing authentication systems or developing new ones to
incorporate dynamic behavior patterns can introduce technical
challenges, compatibility issues, and potential vulnerabilities
that must be carefully addressed to ensure the method’s
reliability and security.

VII. CONCLUSION

In this article, we present PUPGUARD, a solution crafted
to provide protection against puppet attacks. PUPGUARD
harnesses user behavior patterns, particularly the sequence
of pressing the fingerprint module with different fingers,
to capture inherent image features and timing characteristics.
By adopting this two-factor authentication approach, we fortify
security against puppet attacks, prioritizing the observation
of dynamic behavior patterns throughout the authentication
process. The requirement for two separate finger presses
introduces an extra layer of security, with the time gap
between these presses increasing the complexity for potential
attackers. This comprehensive approach enhances security
against fingerprint PAs.

To evaluate the effectiveness of PUPGUARD, we performed
experiments using datasets gathered from 31 subjects,
encompassing both image features and timing characteristics.
These data collection procedures were carried out with the
approval of the IRB. The results of our experiments clearly
illustrate PUPGUARD’s exceptional performance, achieving
the highest accuracy at 97.87% and the lowest FPR at
1.89%, respectively. Additionally, we conducted comparative
experiments to affirm the advantage of incorporating both
image features and timing characteristics into PUPGUARD,
thereby reinforcing its resistance against puppet attacks.
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