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Sorting spatial optical modes is a key challenge that underpins many applications from super-
resolved imaging to high-dimensional quantum key distribution. However, to date implementations
of optical mode sorters only operate on specific sets of modes, such as those carrying orbital angular
momentum, and therefore lack versatility with respect to operation with an arbitrary spatial basis.
Here, we demonstrate an arbitrary spatial mode sorter by harnessing the random mode mixing
process occurring during light propagation in a multimode fibre by wavefront shaping. By measuring
the transmission matrix of the fibre, we show sorting of up to 25 transverse spatial modes of the
Fourier, Laguerre-Gaussian and a random basis to an arbitrary set of positions at the output.
Our approach provides a spatial mode sorter that is compact, easy-to-fabricate, programmable and
usable with any spatial basis, which is promising for quantum and classical information science.

A spatial mode sorter transforms a given spatial mode
to a specific position in a transverse plane. Such a device
is typically used to decompose a complex input optical
signal into a specific spatial basis. One of the simplest
examples is a convergent lens, that uniquely distributes
the Fourier components of incoming light across differ-
ent positions in the lens focal plane. In recent years,
the development of mode sorting devices has attracted
much attention because of the potential that transverse
spatial modes (and knowledge of how these compose a
given signal) hold for implementing fundamental opti-
cal tasks [1]. In classical optics, decomposing an image
in the Hermite-Gaussian (HG) basis enables for example
to improve image spatial resolution [2, 3], and the use
of a Laguerre-Gaussian (LG) basis for spatial multiplex-
ing allows to increase the capacity of optical communica-
tion systems [4–6]. In quantum optics, transverse spatial
modes are used for producing high-dimensional quantum
states [7, 8] that hold potential for quantum computing
and simulation [9, 10], communication [11, 12] and fun-
damental studies [13].

However, even if some technologies for manipulating
spatial modes of light are commercially available and
widely used [14], spatial mode sorting techniques are still
at their early development stage. Among them, phase-
flattening is a well established scheme that was originally
introduced to sort LG-modes of different orbital angular
momentum (OAM) [7]. This approach has the advantage
of being simple to implement because it only consists of
a spatial light modulator (SLM) and a single mode fi-
bre, but it also has drawbacks [15] including that it re-
quires to perform d-projective measurements over time
(d is the number of sorted modes) and is restricted to
specific families of modes. This technique was recently
extended to LG-modes with different radial index [16]
and HG-modes [17], but still measuring projections over
time. More recently, full-field mode sorting systems (i.e.
no projective measurements) were developed for decom-
posing light into LG-modes. Examples range from sys-
tems using fixed diffractive optical elements [18–20] to

those based on multiple phase screens programmed with
SLMs [21–24]. Nevertheless, these systems are currently
restricted to LG-modes and are challenging to implement
because they require light to be reflected by a large num-
ber of phase screens for efficient sorting. This number
scales as 6d ` 1 in the case of sorting d modes between
arbitrary spatial modes [25]. Finally, we also note that
scattering in a layer of paint has been exploited for mode
sorting [26] by using time-consuming optimisation-based
wavefront shaping approaches [27].

Here, we implement a simple full-field mode sorting
system that can operate on any basis. For this, we lever-
age the complex spatial mode mixing process performed
by a multimode fibre (MMF) by using a transmission
matrix (TM) based wavefront shaping technique. The
optical TM was introduced by Popoff et al [28] for ma-
nipulating monochromatic light through a layer of paint
and was then extended to other complex systems such
as MMFs [29, 30] and can also work with light sources
including optical pulses [31, 32] and photon-pairs [33].
Recently, the TM was also used to design complex linear
optical networks for classical [34] and quantum [35] simu-
lations. In our work, we extend the range of applications
to spatial mode sorting. Using the TM of a MMF, we re-
port experimental and simulated results of sorting up to
25 modes and analyse the performance of our approach
with examples taken from the Fourier basis, the LG basis
and a random basis.

Figure 1.a describes an experimental setup composed
of an SLM that injects structured light into a MMF and a
camera that measures the output speckle images in both
polarisations. The TM of the MMF (T ) is measured by
illuminating the SLM at normal incidence with a colli-
mated Gaussian beam (input mode k0) and using a co-
propagating reference, as detailed in [28]. T is a complex
matrix that links optical fields between N “ 32ˆ32 SLM
macropixels and M “ 80 ˆ 40 camera pixels (Fig. 1.f).
One of the most basic tasks that the TM can achieve is to
focus light through the MMF. Using the complex conju-
gate operator T :, an SLM phase mask is calculated and
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Figure 1. a, A phase-only spatial light modulator (SLM)
shapes and injects monochromatic polarised light (810nm)
into a 5cm long 50µm core diameter graded index multimode
fiber (MMF) using a lens f1 “ 20mm. The output surface of
the fibre is imaged on the camera by two lenses f2 “ 20mm
and f3 “ 200mm. A calcite is used to produce two vertical
(V) and horizontal (H) polarised images next to each other.
The mode sorter consists of the SLM and the MMF. Input
modes are the transverse spatial modes of light illuminating
the SLM and output positions are the camera pixels. b, Phase
mask programmed on the SLM to focus light at normal inci-
dence k0. c, A phase ramp corresponding to an input mode
k1 ‰ k0 is superimposed onto the focusing SLM mask. d and
e, Intensity images acquired under k0 and k1 illuminations,
respectively. f, Amplitude and phase of a 25 ˆ 25 subset of
the measured transmission matrix (TM).

programmed (Fig. 1.b) to focus scattered light at a tar-
geted camera pixel [28], as shown in the output intensity
image in Figure 2.d. Interestingly, focusing light using
the TM can be seen as a very simple one-dimensional
mode sorting operation: light from a input mode k0 is
directed to a specific position in the camera plane. If a
mode with a different wave-vector k1 ‰ k0 is inserted
at the input, which is done experimentally by superim-
posing a phase ramp on the focusing phase mask on the
SLM (Fig. 2.c), the focusing effect at the output is lost
and the mode is not sorted (Fig. 1.e).

We build our TM based mode sorting approach based
on this method to focus light through the MMF. First,
we arbitrarily choose spatial modes within a given spa-
tial mode basis. In the example detailed in Figure 2, we
selected two modes from the Fourier basis characterised
by wave-vectors k1 and k2 (‰ k0). The basis is rep-

resented by a change of basis matrix P in which each
column is a complex vector listing all components of the
corresponding mode written in the SLM plane position
basis (see Supplementary Information). Second, we se-
lect two positions r1 and r2 within the illuminated area
on the camera and define a target mode sorting operator
M . M is a real matrix linking input modes (column) to
output positions (lines). In order to implement the sort-
ing operation k1 Ñ r1 and k2 Ñ r2, M is written as a
matrix composed of zeros with only two ones located at
the crossing between the column associated with k1 and
the line associated with r1, and the column k2 and line
r2. Finally, the phase mask that we program on the SLM
for implementing the mode sorting operation (Fig. 2.b)
is calculated using the formula [34]

Φ “ arg
“

diag
`

T :MP :
˘‰

(1)

where Φ is a vector associated with the phase mask, diag
refers to the diagonal of the matrix and arg to is the
complex argument.

The physics underlying Eq. (1) can be understood
when considering the propagation of the input field
through the MMF. Let’s first consider an ideal situation
in which the SLM is replaced by an optical system that
can perform the linear operation T :MP :, where M and
P represent arbitrary target and change-of-basis matri-
ces. The output field Eout obtained after propagation of
an incoming field Ein through the MMF is then written

Eout “ T
“

T :MP :
‰

Ein «MP :Ein (2)

For mode sorting, M can be written as an identity ma-
trix and Eq. (2) then describes a change of basis op-
eration between an arbitrary spatial basis and output
spatial positions, namely an arbitrary mode sorting pro-
cess. Note that the approximation used in Eq. (2) di-
rectly relies on the complex spatial mode mixing process
performed by the MMF. Indeed, as shown experimentally
in Fig. 1.f, a subset of the TM measured in the SLM and
camera pixel basis can be approximated by a random
complex matrix [28, 30]. In this case, one may write
TT : “ 11 ` H{

?
N where N is the number of columns

of T and H is a random matrix of complex coefficients
with unity variance (see SI). Equation (2) is then only
valid for N " 1, which is the case in our experiment
(N “ 1024). However, in a realistic situation, an SLM
can only shape the phase of the field in a specific opti-
cal plane, which means that it only controls the phase
components of the diagonal coefficients of T :MP :. Such
practical limitations effectively reduce the number of de-
grees of control from 2N2 (phase and amplitude N ˆN
matrix coefficients) to N (phase components of an opti-
cal plane), which has the consequence of decreasing the
overall efficiency of the mode sorter compared to the ideal
case.

To test our mode sorter, we measured intensities at the
output for input modes k1 and k2. In the experiment,
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Figure 2. a, Spatial phase components of two input modes k1 and k2 of the Fourier basis. b, Phase mask programmed on the
SLM to implement a two-dimensional mode sorter k1 Ñ r1 and k2 Ñ r2 in the MMF. c,d and e, Intensity images measured
for input mode k1, input mode k2 and a linear combination of them 1{2pk1`k2q, respectively. Light is focused in two different
camera positions denoted r1 and r2. f, Crosstalk matrix of the programmed mode sorter showing a sorting ability of 97.5p1q%.

input modes are generated by superimposing their corre-
sponding phase masks on top of the mode sorting phase
mask on the SLM. Figures 2.c and d show that light fo-
cuses at the two targeted positions r1 and r2 when either
of the modes k1 and k2 are inserted at the input, respec-
tively. Moreover, Figure 2.e shows that light focuses to
both positions simultaneously when a linear combination
of modes 1{2pk1 ` k2q is programmed at the input. The
mode sorting operation is characterised by a cross-talk
matrix, shown in Figure 2.c. An average sorting ability p̄
of 97.5p1q% is calculated from the crosstalk matrix coef-
ficients Ink (nth line and kth column) using the formula

p̄ “
řd
n“1

Inn
řd

k“1 Ikn
[26] (see SI).

Figure 3 shows results of spatial mode sorting involving
up to 25 modes from different spatial basis sets. Using
the same TM from the previous experiment, we calcu-
lated new phase masks with Eq. 1, for three cases of
sorting of d “ 5, d “ 10 and d “ 25 spatial modes from
the Fourier basis. Experimentally measured crosstalk
matrices are shown in Figs. 3.a-b and return values of
average sorting ability ranging from 93p3q% (d “ 5q to
25p10q% (d “ 25). Moreover, it is essential to note that
our approach can be used with any spatial mode basis.
Figures 3.d-f show results of similar mode sorting exper-
iments performed with modes randomly chosen within a
set of LG modes of radial number p “ 0 and azimuthal
number ` P rr´12; 12ss. Here we recalculated the matrix
P associated with the LG modes basis and the mode sort-
ing phase masks using Eq. (1) while using the same, un-
modified TM. Figures 3.d-f show the measured crosstalk
matrices and calculated phase masks (insets) used for
sorting d “ 5, d “ 10 and d “ 15 modes, with sorting
ability values between 82p3q% to 15p6q%.

Using the setup shown in Fig. 1.a, the experimental
tests performed to characterise a given mode sorter are
limited to sets of input modes that can be created by

phase only modulation. To illustrate the versatility of our
approach, we therefore simulated results of mode sorting
using a random basis, in both amplitude and phase. A
set of modes Ri with i P rr1; 25ss was selected from a nu-
merically generated random complex hermitian unitary
1024ˆ 1024 matrix (see SI). This matrix was used as P
in Eq. 1 together with an experimentally measured TM
T to calculate the mode sorting phase masks. Propaga-
tion through the MMF was then numerically simulated
by multiplying the phase shaped input fields by the ex-
perimentally measured TM. Results of crosstalk matri-
ces and phase masks are shown in Figs. 3.g-h for d “ 5,
d “ 10 and d “ 25 random modes, respectively, with
average sorting ability values ranging from 97p2q% to
45p17q%. These results confirm that our approach can
be used to sort spatial modes from any arbitrary basis,
independently of their complexity.

Finally, a quantitative analysis of mode sorting per-
formance is provided in Fig. 4. Values of average sort-
ing ability are represented in function of the numbers of
sorted modes d for the Fourier (red), LG (blue) and ran-
dom (green) basis. Experimental and simulated values
are in very good agreement with a model of the form
1{p1 ` Ad2q ` B, where A and B are two fitting pa-
rameters (see SI). These results show that the average
sorting ability decreases with the increase of the number
of sorted modes. We also observe that the variations of
sorting abilities (error bars in Fig. 4) become larger for
high d values. However, it is important to note that the
average focusing enhancement in our experiment is only
89, a value that can be improved by using a MMF sup-
porting more modes (i.e. with a larger core diameter)
and controlling more SLM macropixels. Improving the
ability to focus light will decrease the value of the slope
parameter A and would enable to sort a larger number
of modes with better sorting ability (see SI).
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Figure 3. a,b and c, Experimental results of mode sorting
in the Fourier basis ki (i P rr1; 25ss) with d “ 5, d “ 10 and
d “ 25 modes. Average sorting ability are 93p3q%, 70p9q%
and 25p10q%, respectively. Inset images show the correspond-
ing phase masks programmed on the SLM. d,e and f, Experi-
mental results of sorting Laguerre-Gaussian (LG) modes with
radial number p “ 0 and azimutal number ` P rr´12; 12ss us-
ing d “ 5, d “ 10 and d “ 25 modes. Average sorting ability
are 82p3q%, 56p7q% and 15p6q%, respectively. Insets show
the SLM phase masks programmed in each case. g,h and i,
Results of mode sorting in a random basis Ri (i P rr1; 25ss)
obtained by simulating light propagating through the MMF
with an experimentally measured TM for d “ 5, d “ 10 and
d “ 25 modes. Average sorting ability are 97p3q%, 83p6q%
and 45p17q%, respectively.

In conclusion, we implemented an arbitrary spatial
mode sorter in a multi-mode fibre using a TM-based
wavefront shaping technique. Once the TM of the
MMF has been experimentally measured, it is used it
for sorting up to 25 modes from a Fourier, an LG or a
random basis. The sorting ability scales as 1{d2 with
the number of sorted modes d. While an arbitrary mode
sorting system would require 6d`1 programmable phase
screens to sort d modes [25], our approach bypasses this
constraint by harnessing the complex mixing process
of a MMF using wavefront shaping, at the cost of a
loss in overall efficiency. This loss of efficiency results
from the compromise made to be able to sort spatial
modes from arbitrary basis. Of course, if a mode
sorting device only aims to operate on one specific
type of mode (e.g. LG modes), it is more efficient to
use the other implementations already reported in the
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Figure 4. Average sorting ability values for the Fourier (red),
LG (blue) and random basis (green) in function of the number
of modes d. Each value is measured by averaging over 10 ex-
periments performed with randomly chosen input modes and
output positions. Results in the case of the random basis are
obtained by simulating light propagation using an experimen-
tally measured TM. The error bars represent the variations of
the sorting ability values within the corresponding crosstalk
matrices. Fitting models of the form 1{p1 ` Ad2q ` B are
represented as solid black lines. Fitting processes return the
parameters A “ 0.005 and B “ 0.008 (Fourier), A “ 0.009
and B “ 0.008 (LG) and A “ 0.002 and B “ ´0.004 (ran-
dom), with coefficients of determination r2 ą 0.997.

literature [18–24]. In essence, we show that random
mixing of light, usually considered as a drawback
for imaging and communication, can be turned into
an advantage for spatial mode sorting applications.
Beyond mode sorting, our approach is also promising
in communication schemes in which it is required to
not only transport spatially multiplexed information
but also to sort the information at the output, as for
example in high-dimensional quantum communication
schemes [36–38].
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SUPPLEMENTARY INFORMATION

Details of the TM measurements and focusing
process.

TM measurement The TM of the MMF is measured
using the technique detailed in Ref. [28]. At the input,
the SLM is divided into 32ˆ32 “ 1024 macropixels com-
posed of 16 pixels each of size 8µm. At the output, optical
field values are measured on 80ˆ 40 “ 3200 camera pix-
els by phase-stepping holography using a non-modulated
speckle as a reference. The SLM is a Holoeye Pluto NIR-
II and the MMF is a 5cm long 50µm core diameter graded
index MMF from Thorlabs.

Enhancement ratio The enhancement ratio is defined
as the ratio between the intensity at a target position
on which light is focused and the average intensity be-
fore focusing [27]. This ratio characterises the ability of
our system to focus light through the MMF using the
TM. In our experiment, we measures an average focus-
ing enhancement value of 89 (average value taken over 25
focusing targets).

Approximation in equation (2) We consider T as an
MˆN matrix composed of randomly distributed complex
independent coefficients, with variance σ2

T . The elements
of TT : can be written as:

• Any off-diagonal element rTT :skl (k ‰ l) results
from the complex sum of N random phasors:

rTT :skl “
N
ÿ

n“1

tlntkn˚ (3)

Therefore, rTT :skl is also a random phasor with
amplitude |rTT :skl| “

?
Nσ2

T (i.e. random walk in
the complex plane).

• Any diagonal element rTT :skk results from the
complex sum of N real elements:

rTT :skk “
N
ÿ

n“1

|tkn|
2 (4)

Therefore, rTT :skk “ Nσ2
T .

In conclusion, TT : can be written as:

TT : “ σ2
T

„

11`
H
?
N



(5)

where H is a random matrix of complex coefficients with
unity variance. Equation 2 is then only valid for N " 1,
which is the case in our experiment (N “ 1024). Note
that we can write σ2

T “ 1 by normalising T accordingly.

Details of the spatial input modes basis sets

Fourier basis. After spatial discretization, an element
Pij of the change of basis matrix P associated to the
Fourier basis is written:

Pij “ eikjri (6)

where ri is the position of the ith macropixel of the
SLM and kj is the wave-vector associated to the jth

input mode. In our experiment, we selected 25 input
modes with discrete wave-vectors kj “ pkxj , kyjq and
with values kxj P t´2.9;´1.44; 0; 1.44; 2.9u.104 rad.m´1

and kyj P t´2.9;´1.44 : 0; 1.44; 2.9.u.104. The matrix
P is used in Eq. (1) to calculate the mode sorting SLM
phase mask. When performing the mode sorting exper-
iments shown in Figs. 2 and 3.a-c, the phase patterns
associated to the corresponding input mode are super-
imposed on top of the mode sorting phase mask on the
SLM. These phase masks are shown in Fig. 5.a.

Laguerre-Gaussian basis. After spatial discretization,
an element Pij of the change-of-basis matrix P associated
with LG basis is written as:

Pij “ e´
|ri|.

2

ω e´i`jφi (7)

where |ri| and φi are the cylindrical coordinates of the
ith macropixel of the SLM, ω « 1.7mm is the waist of the
collimated Gaussian beam illuminating the SLM and `j is
the azimuthal number associated to the jth input mode.
In our experiment, we selected 25 inputs modes with `j P
rr´12; 12ss. The matrix P is used in Eq (1) to calculate
the mode sorting SLM phase mask. When performing the
mode sorting experiments shown in Figs. 3.d-f, the phase
patterns associated to the corresponding input modes are
superimposed on top of the mode sorting phase mask on
the SLM. These phase masks are represented in Fig. 5.b.

Random basis. The change-of-basis matrix P associ-
ated with the random basis is a random complex unitary
hermitian matrix of size 1024 ˆ 1024 numerically gen-
erated by a computer. We selected 25 inputs modes of
this basis denoted Ri with i P rr1; 25ss. The correspond-
ing sub-matrix is used in Eq. (1) to calculate the mode
sorting SLM phase mask. Amplitudes and phases of the
selected modes are shown in Fig. 5.c. As explained in
the main text, the results of shown in Figs. 3.g-i and
4 were obtained by numerically simulating the propaga-
tion of the random input modes using an experimentally
measured TM.

Fitting model of sorting ability.

Definition of the sorting ability. The sorting ability
pn associated with the nth input mode is calculated from
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Figure 5. a Spatial phase component of 25 input modes
selected kiwithin the Fourier basis. b Spatial phase compo-
nent of 25 input modes with azimutal number `j P rr´12; 12ss
selected in the LG basis. c, Spatial amplitude and phase com-
ponents of 25 input modes Ri selected in the random basis.

the coefficient of the corresponding cross-talk matrix us-
ing the formula [24, 26]

pn “
Inn

řd
k“1 Ikn

(8)

where Ikn is the coefficient of the crosstalk matrix linking
input mode n to the output position k. The average
sorting ability p̄ is therefore calculated by averaging over
all the input modes sorting ability values:

p̄ “
d
ÿ

n“1

pn (9)

The associated standard deviation σp is calculated using
the formula:

σp “

d

řd
n“1ppn ´ p̄q

2

d
(10)

Fitting model. We build the fitting model of p̄ (Fig. 4)
on theoretical results already reported in [27, 28]. We
analyse separately the diagonal and off-diagonal coeffi-
cients of the crosstalk matrix:

• The SLM phase mask calculated using the TM
and programmed onto the SLM to implement a
d-dimensional mode sorting operation results from
the superposition of d phase masks, each mask be-
ing the phase pattern used for focusing light at
a given position on the camera when the SLM
is illuminated with a given input mode. Such
a phase mask superposition is analogous to the
phase mask superposition process used for focusing
light through a complex system at multiple posi-
tions with an SLM illuminated by a single constant
mode. In this latter case, it is demonstrated that
the focusing intensity decreases as 1{d, with d being
the number of target positions [27, 28]. By anal-
ogy, we conclude that the diagonal coefficients of
the cross-talk matrix scale as Inn „ 1{d.

• Average intensity of the crosstalk matrix off-
diagonal coefficients equals that of the grains in the
output speckle pattern [27]. This average intensity
value is constant. Therefore, their sum scales as d.

We therefore conclude that:

p̄ “
1

d

d
ÿ

n“1

„

Inn
Inn `

ř

k‰n Ikn



„
1

1`Ad2
(11)

where A is a coefficient that depends on the focusing
efficiency of our system, which includes the number of
active macropixels of the SLM. The black curves shown
in Fig. 4 are obtained by fitting the experimental data
with a model of the form 1

1`Ad2 ` B, where tA,Bu are
the fitting parameters.

Dependance of A with the number of active macropix-
els on the SLM. The dependance of the parameter A
with the number of active macropixels on the SLM is in-
vestigated in Fig. (6). This figure shows the results of
five simulations of mode sorting in a random basis per-
formed using different numbers of active macropixels on
the SLM, ranging from 1024 to 150. We observe that
the value of the coefficient A, and therefore the slope of
the corresponding curve, increases when the number of
active macropixels decreases. This confirms that the pa-
rameter A directly depends on our ability to refocus light
through the MMF.
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Figure 6. The simulated average sorting ability values
for random basis mode sorting are shown as a function of
the number of modes d using a different number of active
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A “ 0.03 and N “ 150 returns a coefficient of A “ 0.06.
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