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We show that phase aberrations in an imaging system can be mitigated using binary-amplitude masks that
reduce destructive interference in the image spatial frequency domain. Appropriately designed masks increase
the magnitude of the optical transfer function and prevent nulls. This offers a low-cost, transmission-mode
alternative to phase correction as used in active and adaptive optics, without a restriction on the waveband of
operation. © 2011 Optical Society of America
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1. INTRODUCTION
We describe a new approach employing pupil-plane binary-
amplitude masks for the mitigation of phase aberrations in
imaging. Although the pupil phase can be corrected using ac-
tive or adaptive optics [1–3], wavefront modulators tend to be
expensive and the necessary reflection geometry can be a dis-
advantage. Low-cost, transmissive, liquid-crystal phase mod-
ulation, on the other hand, is limited to use at visible and
near-infrared wavelengths. Binary phase modulation using
ferroelectric liquid crystals has been considered as an alterna-
tive to continuous modulation [4]; however, binary-amplitude
modulation offers lower complexity and cost, and it can be
accomplished efficiently from ultraviolet to far-infrared
wavelengths with a wide variety of fixed or agile spatial-light
amplitude-modulation techniques [5–8]. We show that a
binary-amplitude mask located at the aperture stop can be
optimized to mitigate phase aberrations and allow sufficient
information to be recorded for the recovery of a sharp image
using standard digital-image restoration.

We derive an upper limit for the asymptotic modulation-
transfer function (MTF) obtainable in the presence of
large aberrations, using binary-amplitude masks in general.
Although a mask could be devised to yield the asymptotic
MTF for specific spatial frequencies, it is unlikely that masks
exist that approach the limit at all spatial frequencies simul-
taneously. However, significant image contrast across all spa-
tial frequencies is obtained for masks that selectively block
destructively interfering parts of the aperture, and such a
mask can be considered to be the amplitude mask equivalent
of the phase mask proposed by Love et al. [9,10]. Here we de-
rive an analytical expression for the MTF when masking arbi-
trarily large aberrations, which can be seen to be in agreement
with the Strehl ratio found for the phase mask in [9]. Further-
more, we show that for aberrations as large as 3.5 waves of
root-mean-square optical path difference, part of the MTF can
be increased beyond the asymptotic limit by optimization of
three additional free parameters of the mask. More recently, a
similar binary-amplitude modulation has been suggested for
the correction of residual aberrations in adaptive optics by

Osborn et al. [11]. Rigorous simulations showed that the con-
trast can be improved significantly by selectively blocking
areas of the pupil where the wavefront aberration surpassed
a chosen threshold. Sufficient mask transmission is main-
tained because the residual aberrations are relatively modest.
In contrast, the technique described here enables high optical
transmission for arbitrarily high aberrations.

In the following section, the asymptotic MTF is derived for
large aberrations and for binary-amplitude masks in general.
In Section 3, contour masks are introduced, and an analytical
expression is derived for their MTF. Performance in the pre-
sence of common aberrations is evaluated for paraxial
imaging with monochromatic light, and it is found to be in
close agreement with the derived MTF; however, some im-
provement over the asymptotic case was obtained by optimi-
zation of the free parameters of the mask. Finally, the contour
mask is evaluated for off-axis imaging with a compound lens
in broadband light. Although the contrast is lower than that
predicted for monochromatic illumination, the resultant con-
trast is deemed sufficient to enable digital image recovery for
this lens.

2. CONTRAST OBTAINABLE IN THE
PRESENCE OF LARGE ABERRATIONS
The influence of an aberrations on the optical transfer func-
tion (OTF) of an optical system can be lucidly understood
from the autocorrelation of the pupil function [12]:

OTFðνÞ ¼ 1
suppðPÞ

ZZ
P�ðu − νÞPðuþ νÞdu; ð1Þ

with the pupil function being PðuÞ ¼ expðilðuÞÞ, ∀ u‖u‖ ≤ 1,
and 0 otherwise; where lðuÞ is the optical path length variation
expressed in radians; while u and ν are the normalized pupil
coordinate and spatial frequency, respectively. The OTF is
normalized by division by suppðPÞ, the support of the pupil
function, equal to π for a circular aperture. For our purpose
Eq. (1) can be simplified to
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OTFðνÞ ¼ 1
suppðPÞ

ZZ
ΩðνÞ

expðiΔðu;νÞÞdu; ð2Þ

where Δðu;νÞ ¼ lðuþ νÞ − lðu − νÞ, is the difference in the
optical path length between two points on the pupil 2ν apart
and ΩðνÞ is the integration region of the autocorrelated pupil.

It is informative to decompose the integrand in Eq. (2) by
plotting definite integrals with increasing limit in the complex
plane [13], as depicted in Fig. 1, for a circular aperture for
‖ν‖ ¼ 1=2. In the case of a modest defocus ofW20 ¼ λ=4, then
−π=2 ≤ Δðu;νÞ ≤ π=2, as can be seen from the slope of the
curve in Fig. 1(a), and all components contribute construc-
tively to the resultant phasor. For larger aberrations, a de-
structive interference contributes to the resultant phasor
and leads to a reduced MTF, or nulls as shown in Fig. 1(b).
By devising an appropriate pupil mask, we aim to avoid exces-
sive suppression of the MTF by removing or reducing those
destructive contributions, as depicted in Fig. 1(c). We will
show that in the presence of large aberrations, sufficiently
high contrast can be guaranteed to enable the digital recovery
of a high-quality image.

The MTF with binary mask MðuÞ ∈ f0; 1g, can be calcu-
lated for large aberrations for which Δðu;νÞmod2π in
Eq. (2) can be considered to be uniformly distributed in the
interval ½0; 2π�. The ideal mask would permit only constructive
interference for constituent image phasors, i.e., for
ðΔðu;νÞ þ π=2Þmod2π ≤ π. Assuming that the ideal mask ex-
ists, in general for ‖ν‖ > 0, the double integral in Eq. (2)
can be written as a single-dimensional Lebesgue integral
[14], and approximated as shown in Appendix A for large
aberrations by

OTFiðνÞ ¼
1

suppðPÞ
1
T

Z π
2

−π
2

expðiΔÞμ0ðν;ΔÞdΔ

≈
1

suppðPÞ
1
T
AΩðνÞ
2π

Z π
2

−π
2

expðiΔÞdΔ; ð3Þ

where, in the limit for large aberrations, μ0ðν;ΔÞ ¼ AΩðνÞ=2π
accounts for the change in integration variables and 1=T re-
normalizes the transfer function for a mask with transmission,
T . The area of overlap of the autocorrelated pupil function,
AΩðνÞ, at spatial frequency ν, is equal to the product of the
area of support of the pupil function, suppðPÞ, and the
diffraction-limited MTF at ν, MTFDLðνÞ. Considering also that
T → 1=2 for large aberrations, the upper limit of the MTF with
the putative amplitude mask is given by

MTFpðνÞ ≈
2
πMTFDLðνÞ ≈ 0:64MTFDLðνÞ: ð4Þ

For a specific spatial frequency ‖ν‖ ≥ 1=2, it is straightfor-
ward to find a mask satisfying Eq. (4); however, for a broad
range of spatial frequencies and an arbitrary aberration, such

a mask might not exist. The optimal mask can be found by a
rigorous search over a high-dimensional discretized mask
space [15]. Although such an approach is practical when
the aberration and optimal mask are fixed, for dynamic aber-
rations requiring an adaptive optimization of masks, the com-
putational burden for this approach is probably too great for
most real-time applications. We show in Section 3 how the
optimization can be confined to the more tractable three-
dimensional space of the contour masks.

3. CONTOUR MASKS
We propose here the use of contour masks for general aberra-
tions, because they yield comparable contrast to discretized
masks, but require only low-dimensional global optimization.
We define the contour mask, MðuÞ, for an aberration charac-
terized by an optical path length variation, lðuÞ, as

MðuÞ ¼ 1;∀ uj
�
lðuÞ − φ0 − t · uþΔφ

2

�
mod2π ≤ Δφ; ð5Þ

where Δφ is the maximum permitted phase difference
between any two points in the pupil. The to-be-optimized para-
meters φ0 and t are the reference phase and the tip-tilt, respec-
tively. In the simple case of defocus, MðuÞ is a Fresnel zone
plate. The introduction of tip-tilt, t, merely displaces the im-
aged field of view. For modest displacements, such imaging
systems can be considered equivalent; hence, tip-tilt is in-
cluded as an additional free parameter in the optimization pro-
cess, potentially improving the contrast further.

A. Contrast for Monochromatic Illumination
More generally, and for sufficiently large aberrations, the pu-
pil phase, φðuÞ ¼ lðuÞmod2π can be considered to be uni-
formly distributed in the interval ½0; 2π�, and for ‖ν‖ > 0,
the phases φ1 ¼ φðu − νÞ and φ2 ¼ φðuþ νÞ are independent,
so that the integral in Eq. (2) can be approximated as follows:

OTFðνÞ ≈ MTFDLðνÞ
4π2

Z π

−π
expð−iφ1Þ

Z π

−π
expðiφ2Þdφ2dφ1; ð6Þ

where the factor MTFDLðνÞ=4π2 accounts for the change in
integration variables as, demonstrated in Appendix B. The in-
tegrals evaluate to zero, as expected for large aberrations.
Contour masks, on the other hand, permit only interference
of phases −Δφ=2 ≤ lðuÞmod2π ≤ Δφ=2, so that the OTF can
be calculated by changing the integration limits in Eq. (6)
to give a contour mask OTF without nulls:

OTFcðνÞ ≈
2π
Δφ

MTFDLðνÞ
π2 sin2

�Δφ
2

�
≤
2
π2 MTFDLðνÞ: ð7Þ

Fig. 1. (Color online) Decompositions of the OTF integral in the complex plane at spatial frequency ‖ν‖ ¼ 1=2. The black and dashed red curves
depict, respectively, constructive and destructive contributions du to the net OTF (blue phasor), for defocus of a circular pupil for (a) W 20 ¼ λ=4,
(b)W 20 ¼ 0:642λ (for which a null occurs), and (c) with a putative mask blocking the destructive interference components yielding a positive OTF. 4/CO
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We can see that before renormalization by 2π=Δφ, the con-
trast is maximized forΔφ ¼ π when, in the limit for large aber-
rations, T ¼ 50%. Following from Eq. (7), such a mask will
yield approximately 20% (2=π2) of the contrast of the diffrac-
tion-limited transfer function. More importantly, the expected
MTF is independent of the magnitude of the aberrations: it is
limited only by the contrast and spatial resolution of the spa-
tial light modulator.

The same analysis can be used to derive the OTF for the
binary phase masks proposed by Love et al. [9]. We see that
this leads to an OTF equal to 4=π2 times that of the diffraction-
limited MTF. Because this OTF is real and nonnegative,
the maximum intensity in the image plane can be found on the
optical axis. The fraction of the integral of the OTF and the
integral of the diffraction-limited MTF yield a Strehl ratio of
4=π2, in agreement with that found in [9].

Only the parameters φ0 and t are varied to optimize the
MTF, or more specifically, the expected imaging error [16].
As we can see from the contour plot in Fig. 2, this low-
dimensional optimization space contains local minima; how-
ever, our simulations indicate that a minimum very close to
the global minimum can generally be achieved after only a
few iterations of the differential-evolution algorithm [17], im-
plemented in MATLAB with a population of 30, a crossover
rate of 0.8, and a differential-evolution step size of 0.9.

The three masks depicted in the left column of Fig. 3 were
optimized for minimum image error for three representative
aberrations: astigmatism, coma, and an irregular phase aber-
ration not atypical of the human eye [18–20]. The black areas
represent opaque areas of the mask, and the hue of the trans-
missive areas indicates the pupil phase. The plots in the cen-
tral column of Fig. 3 show the MTFs for the nonmasked,
aberrated pupils: the low values and nulls in the sagittal, di-
agonal, and tangential MTF are readily apparent. The MTFs in
the right column correspond to the masked, aberrated pupils
and show a significant increase in the MTFs. Even considering
that the total transmitted intensity is reduced by the mask to
approximately 50%, the MTF for the masked pupil is signifi-
cantly increased for all spatial frequencies and there are no
nulls, thus enabling a high-quality image to be recovered.

Note that the transmission of the masks is actually larger
than 50%. Although the tested aberrations are considerable,

areas of the linearly changing phase exist so that the contour
mask can have large open areas, such as seen at the center of
Fig. 3(d). Furthermore, when at low spatial frequencies, this
open area coincides with itself in the autocorrelation of the
pupil function; it evokes a modest boost in the MTF as can
be seen from Fig. 3(f) for spatial frequencies of ‖ν‖ ≤ 1=2.

B. Contrast for a Compound Lens and Broadband
Illumination
Many applications are essentially monochromatic; for in-
stance, laser imaging, fluorescence microscopy, and retinal
imaging with a scanning laser ophthalmoscope. Other applica-
tions have a modest bandwidth; e.g., true-color imaging
(relative spectral width Δλ=λ0 ≈ 20% per channel), snapshot
multiband imaging [21] (≈2%), and long-wavelength infrared
imaging with quantum-well detectors (≈5%). In these cases,
one might expect that mask optimization based on the above
principle of monochromatic imaging might suffer some reduc-
tion in optical efficiency. As a practical example, we describe
now a contour mask for enhanced off-axis imaging where the
relative bandwidth is 20%.

A contour mask was optimized for correction of aberra-
tions introduced by an f =5 cemented doublet when used 5°
off axis at a nominal central wavelength of λ0 ¼ 550nm. In this
case, the aberration consists mainly of astigmatism and field
curvature with a combined peak-to-valley optical path differ-
ence of approximately 10λ0. The aberration and optimized
mask are shown in Fig. 4(a). MTFs calculated by ray tracing
with broadband light (with wavelengths 495nm ≤ λ ≤ 605nm,
uniformly weighted) are shown in Figs. 4(b) and 4(c) respec-
tively. We show in Figs. 4(b) that, without a mask, the MTF is
strongly suppressed and contains a large number of nulls. In

Fig. 2. (Color online) Typical cost function shown for astigmatism as
a function of tip-tilt ðtx; tyÞ, and minimized for phase reference, φ0.
Bright yellow and white regions indicate a high cost for large tip
or tilt. The encircled dark red spots in the center indicate four modest
tip-tilts that lead to equivalently performing masks, one of which is
shown in Fig. 3(a).4/CO

Fig. 3. (Color online) Aberration compensation of (a)–(c) astigma-
tism, (d)–(f) coma, and (g)–(i) an aberration representative for the
human eye, of, respectively a root-mean-square optical path differ-
ence of 2λ, 2λ, and 3:5λ. The aberration phases and contour masks
with the relative transmission noted below are shown in (a), (d),
and (g). The tangential (black), sagittal (blue), and diagonal (red)
MTF without mask in (b), (e), and (h), and with mask in (c), (f),
and (i). 4/CO
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contrast, as shown in Fig. 4(c), the addition of the mask yields
a higher MTF and an absence of nulls. Although the contour
mask was designed for monochromatic operation, useful
aberration correction properties are maintained for a com-
pound lens and illumination with an extended bandwidth;
however, the contrast is lower than would be obtained for
monochromatic operation, and although large aberrations
can be corrected, the MTF will remain high only if the phase–
aberration function is relatively invariant with the wavelength.

4. CONCLUSIONS
Binary masks can be designed to correct for phase aberrations
to yield, in general, a contrast of approximately 20% (2=π2) of
the diffraction-limited MTF, and for a single spatial frequency
the relative contrast can, in principle, be as high as 64% (2=π).
The absence of nulls and the relatively modest reduction in
the MTF allow for digital recovery of a high-quality image.
Although the benefits of the masks are most pronounced
for monochromatic imaging, good performance with an ex-
tended bandwidth is shown to be possible. By employing
low-dimensional mask optimization (in contrast to the high-di-
mensional optimization proposed in [15]), binary contour
masks can be calculated efficiently, facilitating their use in
adaptive optics. Furthermore, adaptive programmable masks
could enable image recovery for unknown aberrations follow-
ing a similar approach to those currently used in conjunction
with deformable mirrors [22–24].

APPENDIX A: APPROXIMATION OF THE
OPTICAL TRANSFER FUNCTION WITH A
SINGLE-DIMENSIONAL INTEGRAL
The OTF defined as using the double Riemann integral of
Eq. (2), can also be written using a Lebesgue integration [14],
where one integrates over the possible function values Δ̂, of
Δðu;νÞ as follows:

OTFðνÞ ¼ 1
suppðPÞ

ZZ
ΩðνÞ

expðiΔðu;νÞÞdu

¼ 1
suppðPÞ

Z
∞

−∞

expðiΔ̂ÞdμðΔ̂Þ; ðA1Þ

with dμðΔ̂Þ, the differential area of the integration region ΩðνÞ
where Δ̂ ≤ Δðu;νÞ < Δ̂þ dΔ̂.

Because expðiΔ̂Þ is periodic, with a period of 2π, the single
integral can be split into a summation of a number of intervals
of size 2π covering the image of Δðu;νÞ:

Z
∞

−∞

expðiΔ̂ÞdμðΔ̂Þ ¼
Z π

−π
expðiΔ̂Þ

Xkmax

k¼kmin

dμðΔ̂þ 2πkÞ; ðA2Þ

where the values kmin and kmax bound the image of Δðu;νÞ. In
other words, instead of integrating over Δ̂, one can integrate
over Δ̂mod2π, weighting the integrand with the total area of
equally spaced contours, i.e., where Δ̂ ≤ Δðu;νÞmod2π < Δ̂
þ dΔ̂.

Consider now a proportionally larger aberration with
lcðuÞ ¼ c · lðuÞ, so that the difference in optical path length
is correspondingly larger: Δcðu;νÞ ¼ c ·Δðu;νÞ, and its area
of integration μcðΔ̂Þ is related as: μcðΔ̂Þ ¼ μðΔ̂=cÞ. The sum-
mation inside the integral of Eq. (A2) for the larger aberration
can then be written as

Xc·kmax

k¼c·kmin

dμcðΔ̂þ 2πkÞ ¼
Xc·kmax

k¼c·kmin

dμðΔ̂=cþ 2πk=cÞ1=c

¼
X2πkmax=δ

k¼2πkmin=δ
dμðΔ̂δ=2π þ kδÞδ=2π; ðA3Þ

with δ ¼ 2π=c. Because Δ̂ is bound to ½−π; π�, the term Δ̂δ=2π
must vanish in the limit for c → ∞. Hence, if the Lebesgue
measure μðΔ̂Þ is differentiable, Eq. (A3) will converge to
the integral:

lim
c→∞

Xc·kmax

k¼c·kmin

dμcðΔ̂þ 2πkÞ ¼ 1
2π

Z þ∞

−∞

dμðΔ̂ÞdΔ̂ ¼ AΩðνÞ
2π ; ðA4Þ

with AΩðνÞ being the total area of the integration region. The
requirement of differentiability of μðΔ̂Þ is not very restrictive.
For the limiting cases where μðΔ̂Þ is not differentiable, such as
for a constant Δðu;νÞ, the limit of Eq. (4) can be surpassed;
e.g., for ν ¼ 0, the OTF is unity. In general, however, for large
aberrations, the phase difference Δðu;νÞmod2π can be con-
sidered to be uniformly distributed and the summation in
Eq. (A2) can be brought outside the integral so that Eq. (3)
is obtained after substitution in Eq. (A1).

APPENDIX B: DERIVATION OF THE
INDEPENDENT PUPIL APPROXIMATION TO
THE OPTICAL TRANSFER FUNCTION
In general, for large aberrations, the phases φ1ðuÞ ¼
lðu − νÞmod2π and φ2ðuÞ ¼ lðuþ νÞmod2π will also be ap-
proximately distributed uniformly. Furthermore, both vari-
ables will be independent when the phase difference
lðuþ νÞ − lðu − νÞmod2π is uniformly distributed. Hence, for
sufficiently large aberrations, Eq. (2) can be approximated by

OTFðνÞ ≈ 1
suppðPÞ

Z π

−π

dφ1

2π

ZZ
ΩðνÞ

expð−iφ1Þ expðilðuþ νÞÞdu;

ðA5Þ

permitting us to separate the first factor out of the internal
double integral:

Fig. 4. (Color online) (a) Off-axis aberration at λ0 ¼ 550nm of a ce-
mented doublet with contour mask optimized for panchromatic op-
eration for 495nm ≤ λ ≤ 605nm (Δλ=λ0 ¼ 20%). (b) The tangential
(black), sagittal (blue), and diagonal MTF (red) before and (c) after
the introduction of the contour mask.4/CO
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OTFðνÞ ≈ 1
suppðPÞ

1
2π

Z π

−π
expð−iφ1Þ

ZZ
ΩðνÞ

× expðilðuþ νÞÞdudφ1:

ðA6Þ

Following the same procedure for lðuþ νÞ as used in
Appendix A for Δðu;νÞ, the internal double integral can be
converted to a single integration:

OTFðνÞ ≈ 1
suppðPÞ

1
2π

Z π

−π
expð−iφ1Þ

AΩðνÞ
2π

Z þπ

−π

× expðiφ2Þdφ2dφ1; ðA7Þ

which is equivalent to Eq. (6).
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