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Interferometric synthetic aperture arrays (SAA) can be refocused at any range via digital processing of the raw data,
called the visibility function. Such systems are sensitive, however, to ranging errors in digital refocusing. They,
therefore, exhibit a limited depth of focus, because these errors are equivalent to introducing defocus in the system.
We derive an analytical expression for the Strehl ratio of synthetic aperture arrays, which accounts for both
the antenna voltage pattern and the focal shift factor encountered in imaging systems with a low Fresnel number.
Assessment of the depth of focus of short-range imaging arrays is allowed and is illustrated for common array
designs. © 2010 Optical Society of America
OCIS codes: 280.6730, 120.5800, 040.1240, 110.6795, 110.3175.

In interferometric synthetic aperture radiometers, the im-
age is formed digitally after sampling of the visibility
function by the antenna array [1–3]. Because of the co-
herent detection, digital refocusing can then be per-
formed by adequate adjustment of phase terms in the
digital image reconstruction. This is similar, in principle,
to the interferometric synthetic aperture microscopy
technique [4]. For the high spatial resolution of synthetic
aperture arrays (SAA) to be maintained throughout a 3D
volume, it is necessary to digitally focus on each point on
the surfaces being imaged, and the depth of field (DoF) of
the SAA determines the accuracy with which this must be
accomplished and also the blurring characteristics of
out-of-focus planes. We show here, using a Strehl ratio
metric, that the DoF characteristics vary significantly
with the SAA parameters and also that they are sig-
nificantly different from those for an equivalent con-
ventional imager. Range focusing errors in SAA are
mathematically equivalent to defocus in a conventional
optical system. The DoF of a conventional optical system
can be defined in terms of its Strehl ratio, as was first
proposed by Rayleigh [5]. We apply here this approach
to obtain the first characterization of the DoF of inter-
ferometric SAA.
The defocus parameter W20 quantifies the severity of

the defocus effect. It is expressed here in units of wave-
lengths and defined in object space because the image is
formed digitally in SAA:

W20 ¼
a2z

2λf ðf þ zÞ
; ð1Þ

with a being the radius of the aperture of the array, λ the
center wavelength of the receivers, f the focusing range,
i.e., the focal length introduced in the digital image for-
mation, and z the axial displacement of the target from
the focal plane oriented positively away from the array.
To describe the pupil function of the array, we first define
the pupil function P0ðρ0=aÞ ¼ P0ðρÞ of a circular aperture
system (with radius a) in the presence of defocus, with ρ0
and ρ the absolute and normalized radial pupil variables,
respectively:

P0ðρÞ ¼ pðρÞ exp½j2πW20ρ2&; ð2Þ

pðρÞ ¼
!
1 jρj ≤ 1;
0 jρj > 1;

: ð3Þ

We define the parameter ρa ¼ b=a, where b is the ra-
dius of the aperture of a single antenna. The defocused
pupil function of the array Pðρ; W20Þ is obtained from
Eq. (2) after modification of the amplitude pupil function:

Pðρ; W20Þ ¼ ej2πW 20ρ2
Xk¼N

k¼1

δðρ − ρkÞ ' 'p
"
ρ
ρa

#
; ð4Þ

where '' denotes the two-dimensional convolution pro-
duct, ρ ¼ ðx; yÞ is the pupil-plane Cartesian vector coor-
dinate, and ρk is the vector coordinate of the center of
antenna k. When f ≫ a ≫ λ, the impulse response
P̂ðr; W 20Þ of the array is proportional to the Fourier trans-
form of the pupil function Pðρ; W20Þ within the paraxial
approximation [5]:

P̂ðr; W20Þ ¼
−jejkza2

λf ðf þ zÞ

Z
þ1

−1

Z
þ1

−1
Pðρ; W20Þ

× exp
$
−j

2πa
λf ðξxþ ηyÞ

%
dξdη; ð5Þ

Fig. 1. (Color online) SðW20Þ=KðW20Þ for the power-law Y
array (Y), Reuleux triangle array (R), circular array (C), and real
circular aperture system (Real). ρa ∼ 0:0091 and NF ¼ 20.
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where r ¼ ðx; yÞ denotes the object-plane Cartesian vec-
tor coordinate. Using the change of coordinates u ¼
ax=λf , v ¼ ay=λf and ignoring the unimportant phase
factor kz in Eq. (5), P̂ðr; W20Þ is reduced to

P̂ðr; W 20Þ ¼
NF − 2W20

f

Xk¼N

k¼1

p
"
ρk

ρa

#

' ' exp½j2πðW20ρ2k þ uξk þ vηkÞ&; ð6Þ

¼ NF − 2W20

f

Xk¼N

k¼1

Fkðr; W 20Þ

× exp½j2πðW20ρ2k þ uξk þ vηkÞ&; ð7Þ

where NF ¼ a2=λf is the Fresnel number of the array
aperture, and

Fkðr; W20Þ ¼ Vkðr; W20Þ
ZZ

p
" ρ
ρa

#
expðj2πW 20ρ2Þ

× exp½−j2πðξαþ ηβÞ&dξdη; ð8Þ

where ξ and η are dummy variables representing the
normalized pupil coordinates, α ¼ uþ 2W20ξk, β ¼
vþ 2W20ηk, and Vkðr; W20Þ is a unity factor introduced
here for later convenience. The variables α and β de-
scribe the lateral displacement of the diffracted field con-
tribution from each subaperture that is associated with
the focus error. Equation (8) is a Fresnel transform
and can also be viewed as the Fourier transform of a ro-
tationally symmetric function. Thus Fkðr; W 20Þ depends
on the radial variable ζ ¼ ðα2 þ β2Þ1=2:

Fkðr; W20Þ ¼ 2πVkðr; W20Þ
Z ρa

0
expðj2πW 20ρ2Þ

× J0ð2πζρÞρdρ; ð9Þ

where J0ðxÞ is the Bessel function of the first kind of or-
der zero. Fkð0; 0Þ is equal to the normalized area of the
antenna dish πρ2a. Equations (7) and (9) describe the im-
pulse response of an optical system with the generalized
pupil function given in Eq. (4). The impulse response of
SAA is determined by both the array pattern and voltage
pattern Vkðr; W20Þ of each antenna, which is written for
circular antennas as

Vkðr; W20Þ ∝ 2
J1½2πbγðNF − 2W20Þ=a2&
2πbγðNF − 2W 20Þ=a2

; ð10Þ

where γ ¼ ½ðx − aξkÞ2 þ ðy − aηkÞ2&1=2. For simplicity
Fkðr; W 20Þ will be expressed as

Fkðr; W20Þ ¼ Ak expðjθkÞ: ð11Þ

The point-spread function (PSF) of the array, hðr; W20Þ,
is equal to the square modulus of the coherent impulse
response. Combining Eqs. (7) and (11), one can express
the on-axis value of the defocused PSF as

hð0; W20Þ ¼ 2
ðNF − 2W 20Þ2

f 2
Xm¼N

m¼1

Xn¼N

n¼mþ1

AmAn

× cos½2πW 20ðρ2m − ρ2nÞ þ θm − θn&: ð12Þ

Note that the autocorrelation terms in Eq. (12), i.e.,
terms for which m ¼ n, are excluded from the sum be-
cause they do not participate in the image formation
of interferometric SAA. Similarly to the definition used
in [6] the Strehl ratio SðW20Þ is defined here as

SðW 20Þ ¼
hð0; W20Þ
hð0; 0Þ

¼ j P̂ð0; W20Þj2

j P̂ð0; 0Þj2
: ð13Þ

Combining Eqs. (12) and (13) the Strehl ratio of an
SAA is

SðW20Þ ¼
KðW20Þ
ðπρ2aÞ2B

Xm¼N

m¼1

Xn¼N

n¼mþ1

AmAn

× cos½2πW 20ðρ2m − ρ2nÞ þ θm − θn&; ð14Þ

KðW 20Þ ¼
ðNF − 2W20Þ2

N2
F

; ð15Þ

where B ¼
Pm¼N

m¼1

Pn¼N
n¼mþ1 Vmð0; 0ÞVnð0; 0Þ. Equation

(14) constitutes the main result of this letter and can
be used to characterize the DoF of interferometric
SAA. Three special cases are now considered. First,
the Strehl ratio SrealðW20Þ of a circular real aperture op-
tical system is obtained by combination of Eqs. (7), (9),
and (13):

SrealðW 20Þ ¼ KðW 20Þsinc2ðW20Þ; ð16Þ

with sincðxÞ ¼ sinðπxÞ=ðπxÞ. This is in agreement with
the expression derived in [6]. The factor KðW20Þ in
Eqs. (14) and (16) and detailed in Eq. (15) is constant
and equal to unity for Fresnel numbers that are large
compared to unity, typically NF ≥ 100. It can therefore
be neglected in most systems operating at visible wave-
lengths. However, this factor becomes significant when
NF < 100 and is then responsible for the axial shift of
the maximum axial intensity away from the focal plane
and toward the exit pupil. This effect, previously de-
scribed in [6–8], occurs in millimeter-wave short-range
imaging, e.g., a personnel scanner, where typically NF ∼

20 for f ¼ 2 m, a ¼ 35 cm, and λ ¼ 3 mm. The Strehl
ratio S0ðW20Þ in the limit case b ¼ 0 is readily obtained
from Eq. (6) and (13):

S0ðW20Þ ¼
2KðW20Þ
NðN − 1Þ

Xm¼N

m¼1

Xn¼N

n¼mþ1

cos½2πW20ðρ2m − ρ2nÞ&:

ð17Þ

Because KðW 20Þ is independent of the array configura-
tion, it is clear from Eq. (17) that an array of antennas
distributed on a circle maximizes S0ðW20Þ. If one
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accounts for the finite radius of the antennas, the Strehl
ratio ScirðW20Þ for a circular array is readily obtained
from Eq. (14):

ScirðW20Þ ¼
2KðW 20Þ

NðN − 1ÞV0ð0; 0Þ
1

ðπρ2aÞ2
Xm¼N

m¼1

Xn¼N

n¼mþ1

AmAn

× cosðθm − θnÞ: ð18Þ

Equations (14), (18), and (18) are useful in the design of
short-range imaging antenna arrays with a specific DoF.
To illustrate this, the Strehl ratio of three 27-antenna
arrays are calculated: (i) a conventional power-law Y-
shaped array [1,9], denoted Y , with a power parameter
of 1.7, (ii) a Reuleux triangle array, denoted R, and (iii)
a circular array, denoted C. Note that similar to C arrays,
the R array samples the Fourier domain with an isotropic
cutoff frequency [10,11]. These results are compared with
the Strehl ratio of a real circular aperture system, denoted
Real. The ratio SðW20Þ=KðW20Þ, shown in Fig. 1 for
NF ¼ 20, solely depends on the array geometry and there-
fore fully characterizes the effect of the array configura-
tion on theDoF of the array. The effect on SðW20Þ=KðW20Þ
of the term Fkð0; W20Þ due to finite-size antennas is pre-
sented for the R and C arrays, with ρa ∼ 0:0091, corre-
sponding to an antenna radius b ¼ λ for the C array
(λ ¼ 3:2 mm). The parameterW 20 was recalculated to ac-
count for the change in aperture due to finite-size anten-
nas. The increase in SðW 20Þ=KðW 20Þwith the antenna size
ρa observed for W20 > 0 is primarily due to the antenna
voltage pattern. For antenna elements such that b ≤ λ=2
(ρa ∼ 0:005), as typically employed in mm-wave SAA,
S0ðW20Þ provides a good approximation to SðW20Þ over
the range jW20j ≤ 2. The error of this approximation de-
creases with lower values of NF and is 1.2% and 1.9%
for the R and C arrays, respectively at ρa ∼ 0:005 and
NF ¼ 20. The variation in SðW20Þ with NF is shown in
Fig. 2 for (a) NF ¼ 20 and (b) NF ¼ 5. It is assumed that
only f is varied and that the other parameters remain un-
changed. TheDoF limits of SAA are determined according
to the threshold SðW 20Þ ≥ 0:8. The R and C arrays are
shown to achieve increased DoF compared to the real
aperture system, with DoF limits W20 ¼ ½−0:6; 0:4& and
W20 ¼ ½−37; 1:1&, respectively, compared to W20 ¼
½−0:25; 0:2& for the real aperture system with NF ¼ 20.
For NF ¼ 5, these limits become W20 ¼ ½−0:95; 0:2&,
W20 ¼ ½−52:9; 0:25&, and W20 ¼ ½−0:35; 0:15& for the R
array, C array, and the real aperture system, respectively
(ρa ¼ 0:005). In summary, an analytical expression for the
Strehl ratio of SAA was derived and accounts for the
directive voltage pattern of finite-sized antennas and
the focal shift factor encountered in imaging systemswith
a low Fresnel number. This expression allows immediate

assessment of the DoF of short-range imaging inter
ferometric arrays and may be used in the design of such
systems.
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Fig. 2. (Color online) SðW20Þ for the same systems as in Fig. 1
(with the same legend). (a) NF ¼ 20 and (b) NF ¼ 5.
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