Oximetry in the eye using hyperspectral imaging

Andy Harvey*, Alistair Gorman, Tushar Choudray, Derek Ball and Gonzalo Muyo
University of Glasgow and Heriot Watt University
*Tel +0141 330 8606
*andy.harvey@glasgow.ac.uk

Andy McNaught and David Mordant
Eye Clinic, Cheltenham Hospital

Steve Morgan, John Crowe and Paul Rodmell
Nottingham University
Outline

• Spectral imaging in the retina
• Instrumentation
• Algorithms for oximetry
• Validation
 • Monte-Carlo modelling
 • Phantom eye
Hyperspectral imaging

Quantify chemical abundances by analysis of *spectra*
Oximetry of retinal blood vessels

- Anterior chamber (full of aqueous humour)
- Posterior chamber
- Vitreous humour
- Retina
- Optic disc
- Optic nerve
- Choroid
- Macula
- Sclera
- Lens
- Iris
- Cornea
- Light

Ocular structures are labeled to illustrate the anatomical locations relevant to retinal oximetry.
The Role of Spectral Retinal Imaging

• By 2020 there will be 200 million visually-impaired people worldwide
 • Glaucoma, diabetic retinopathy, ARMD
 • 80% of those cases are preventable or treatable
 • Screening and early detection are crucial
• Can spectral imaging offer enhancements to current screening techniques?
• Spectral imaging is non-invasive and safe
 • cf. fluorescein angiogram
• Spectral imaging can enable imaging of
 • Retinal biochemistry
 • Blood oximetry
 • Diabetic retinopathy, glaucoma
 • Lipofuscin etc
 • Age-related macula degeneration
Time-sequential multi-spectral Retinal Camera

Sequential retinal images are taken using wavelengths of light from 500-700nm.
Oximetry

Absorption Coefficient for HbO2 (cm$^{-1}$)
Absorption Coefficient for Hb (cm$^{-1}$)

Isobestic point

Transmission light
A versus μ_a for a scattering and absorbing sample

\[A = f(\mu_a) \text{ non-linear} \]

Offset A_{scatt}

Linear over small λ range

Philosophical Transactions: Biological Sciences 352 649–659
Light paths in retina

- Recorded light intensity is due to the sum of many light paths.
 Dominant paths:
 - Double pass
 - Specular
 - Backscatter
 - Single pass

- Physical model required to derive accurate oximetry algorithms
Retinal ‘transfer function’
Validation with eye phantom

- Sclera layer
- Lens
- Vessel and removable vessel holder
- Choroid and RPE layers
- Back plate

- ~200 µm
- FEP capillary (vessel)
- Mylar or FEP (RPE)
- Blood-filled cavity (choroid)
- Spectralon (sclera)

- ~200µm
- ~25µm
- 500µm
- 3000µm
Oximetry with a bright, spectrally-neutral background

- Sodium dithionite used to deoxygenate blood

![Graph showing oxygen saturation vs. sodium dithionite concentration](image)

- Modified Beer-Lambert with contrast adjustment gives accurate results for absolute oximetry results in this simple case
Retinal vessel oximetry with multi-spectral fundus camera measurements

\[OD(\lambda) = S(\lambda) + \eta c_{Hb_{TOTAL}} d \left[(\varepsilon_{HbO_2}(\lambda) - \varepsilon_{Hb}(\lambda)) OS + \varepsilon_{Hb}(\lambda) \right] \]

\[OD_{\lambda_A} / OD_{\lambda_B} \propto OS \]
Normal and diseased retinas

Normal retina

Diabetic retina

• **Objective and motivation**
 • Accurate/sensitive and reliable oximetry
 • No equivocal artefacts
Arteritic ischaemic optic neuropathy (biopsy proven)

At presentation:
VA: PL: ?reduced RGC O2 consumption

After 3 days, and 3g IV Methylprednisolone:
VA 6/12: ?increased RGC O2 consumption
‘Snapshot’ retinal oximetry with ‘IRIS’

- novel spectral imager (‘IRIS’) integrated into a retinal camera
- retina is imaged at eight wavelengths simultaneously
- allows accurate calculation of intravascular haemoglobin O2 sat. No registration difficulties
- validated using *model eye*
Monte-Carlo Modelling

- **Accurate method of modelling radiative transfer in turbid media**
- **Scattering and absorption parameters for oxygenated and deoxygenated blood are well known**
- **Fundus not as well characterised**
Full field illumination, centre detection

- pathlength only in vessel, includes backscatter
- 3 peaks – backscatter, single pass, double pass
Illumination from both sides detection above vessel

- Structured illumination offers the potential to restrict the path lengths in the vessel
- Getting close to simple algorithms such as the modified Lambert Beer Law being valid
Conclusions

- **Quantitative retinal oximetry**
 - Accuracy requires physical model
 - Snapshot
 - ‘Structured illumination’ reduces light-path uncertainty
- **Spectral imaging in the retina is a window on whole-body health**
- **Oximetric techniques transferable to body tissue**